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Traffic in the city is a challenge that has serious repercussions as far as
loss of money, environmental depreciation, and accidents are
concerned. This paper proposes an end-to-end cloud and edge
computing hybrid deep learning architecture suitable in managing
traffic in intelligent transportation systems in real-time in order to
counter these problems. The given framework will find the synergy of
edge computing and centralized cloud resources in a bid to learn model
optimization in a low-latency manner, maximizing scalability. On the
edge, object detection models (like YOLOv8) and lightweight
convolutional neural networks (CNNs) are implemented on embedded
devices to allow in real-time analysis of a video that may be used to
detect a vehicle, estimate traffic levels, or monitor incidents in
intersections. In the meantime, the layer of the clouds is used to train
big models and coordinate at the world level utilizing the information of
historical traffic regimens using spatio-temporal deep learning models,
such as Graph Convolutional Networks (GCN), Long Short-Term
Memory (LSTM) networks, or Transformer-based architectures to
predict the future of the traffic flows and inform the strategy. The
effective task offloading, the synchronization of data, and the update of
the model periodically are provided due to a dynamic communication
mechanism between the edge and cloud nodes. The framework also
reuses model compression methods to allow the compatibility of edge
devices without sacrificing prediction performance. The cameras, GPS,
and roadside units are fused with multi-modal sensor fusion which
makes the data in use robust and decisions reliable. Real-world
experiments on METR-LA, and CityFlow indicate that the proposed
hybrid system can generate a 26% incident response time
advancement, over 65% bandwidth utilization decrease because of edge
preprocessing, and prediction surpassing the conventional constituent
server-only or exclusively edge solutions. In addition to that, the
architecture can consider flexibility to changing traffic demands and
scalability to multi junction implementations. The article highlights the
exciting possibilities of distributed intelligence as an approach to
current mobility systems in urban setting and paves the way to
integrating distributed intelligence with autonomous vehicles and
vehicle-to-everything (V2X) technologies in the future, conferring on
the former its suitability as one of the solutions employed in the second
generation of smart cities.

1. INTRODUCTION

management of traffic flow may lead to a delay in

The high rate of urbanization and motorization has  delivering emergency and logistics services,

caused traffic congestion to escalate significantly,
posing a lethal consequence on environmental
sustainability, the development of the economy,
and overall health of the population. In the reports
on global mobility, it was argued that the traffic
conditions in the urban centers have been causing
air pollution, fuel wastage and a worsening state of
living conditions. Besides, the problematic

increasing both the social and financial load.

The conventional system of traffic management
has been majorly centralized where decisions are
made and monitoring is done in the data centers.
The system obtains traffic data via the city
distributed cameras and sensors and sends them
to centralized servers in which supply-absorbing
tasks like prediction of traffic occur, detection of

Electronics, Communications, and Computing Summit | Apr - Jun 2025 28



Saravanakumar Veerappan et al / Cloud-Edge Hybrid Deep Learning Framework for Real-Time Traffic
Management

incidents and optimization of signaling processes
are completed. Although centralized systems enjoy
a high level of computational power, they are
naturally constrained by latency of the network,

ped

single points of failure, difficulty in scaling as well
as bandwidth-intensive, especially in adapting to
dynamic traffic flows and require a quick response
time to the environment.
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Figure 1. Cloud-Edge Al Architecture for Traffic Management

To overcome these shortcomings, the recent
development of edge computing and artificial
intelligence (Al) promise to be helpful. The major
advantage of edge computing is that it adds
computational capacity near the point of data
collection, allowing low-latency inference by
lessening cloud-reliance. Meanwhile, deep learning
technology has already become a strong candidate
in the traffic prediction, object detection and
anomaly sighting, learning complex spatio-
temporal patterns in large-scale sensor data.
Nonetheless, performing deep learning models
only on the edge devices is limited by constraints
on resources, including processing power,
memory, and energy.

In this paper, a new cloud-edge hybrid deep
learning model is suggested to jointly harness the
power of edge computing and cloud intelligence to
realize real-time, scalable and intelligent
management of traffic. Analysis of the edge layer
executes lightweight video analytics to make on-
time decisions, the cloud layer has to accomplish
big model training, world optimization, and
harmonization. Multi-modal sensor fusion, secure
data sharing, adaptive model distribution, and
ability to create resilient and resource efficient
architecture towards traffic applications in smart
cities have been implemented through the system.
By doing so, this framework will be able to bridge
the performance difference between

29

responsiveness and computational capacity and
thus have the capability of exercising proactive
traffic control allowing overall mobility in the
urban environment.

2. RELATED WORK

The integration of artificial intelligence (AI), edge
computing, and cloud infrastructure have changed
the nature of the discipline of intelligent traffic
management. In this section, recent developments
along three large axes, those of edge Al to monitor
traffic, cloud-based models of traffic prediction,
and hybrid cloud and edge-based solutions, are
discussed.

2.1 Traffic Monitoring using Edge Al

Innovations in edge computing have become
trailblazers in the real-time analysis of traffic,
providing high speeds and low latency data
processing nearby at its origin. Empowered with
Al accelerators, technologies such as NVIDIA
Jetson, Google Coral, and Raspberry Pi are
currently utilized in a wide range of applications,
including detecting vehicles, understanding the
license plates, and estimating the traffic density on
the spot at a given intersection point. As an
example, a fog-based architecture was suggested
by Yu et al. [1] wherein the YOLO-based object
detection models were deployed to the edge
devices to conduct on-site classification of vehicles
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and congestion evaluation. Through their system,
there was a significant amount of latency reduction
that was not possible with cloud-only strategies.
Equally, Qolomany et al. [2] provided an edge-
based approach on the TensorFlow Lite
framework that runs anomalous detections of a
traffic flow on embedded devices in real-time
which illustrates that inference locally is minimal
in terms of the communication.

2.2 Traffic prediction in the cloud

Although edge systems offer low latency, cloud
computing still occasions training and developing
complex models with giant-scale historical data.
Serving deep learning models Deep learning-based
models can be executed by cloud-based solutions
with high-performance computing architecture,
including architectures like Long Short-Term
Memory (LSTM) networks, Graph Convolutional
Networks (GCNs), and Trans Former-based
models. Li et al. [3] wrote about DCRNN as
diffusion convolutional recurrent neural networks
that model spatial and temporal relations
throughout the traffic flow data over the urban
road networks. In a different paper, Wu et al. [4]
created a Graph WaveNet model to predict traffic
with adaptive graph networks and dilated
convolutions. High accuracy of predictions can be
achieved in those centralized models but they
cannot be typically deployed in real time because
of inference delays and strong requirements to
connectivity stability.

2.3 Hybrid Cloud Edge Architectures

The hybrid cloud-edge solutions have been
proposed to overcome edge-only and cloud-only
platform limitations, with the tasks being
partitioned between the situations of edge and
cloud. Zhang et al. [5] put forward a cloud rivetting
edge system where object detection was carried
out in the edge and deep analysis and training was
done in the cloud. This setup lowered the response
time and lowered traffic on the network. In
addition, Alam et al. [6] considered a hybrid traffic
model based on federated learning in which data
privacy could be ensured but the coordination of
training the model was done between the
distributed edge nodes. Their solution proved to
be resilient in the presence of heterogeneous
environment and flexible to the traffic behavior of
regions.

In conclusion, when edge Al allows designing
responsive systems in real-time, and cloud
collection can be used to perform precise long-
term predictions, hybrid architectures represent a
potentially interesting trade-off promoting the
combination of distributed intelligence and
centralized optimisation. Such works form the
basis of this paper where we propose the use of
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multi-modal sensor fusion, spatio-temporal
modeling and adaptive model distribution in an
integrated cloud-edge deep learning framework
that is focused on real-time traffic management in
smart cities.

3. System Architecture

3.1 Overview

The offered architecture is designed according to
three functional layers or parts namely Edge Layer,
Cloud Layer, and Communication Layer, each of
which intricately and dedicatedly contributes to
the real-time, smart traffic management. The Edge
Layer operates on resource-constrained embedded
devices that place NVIDIA Jetson Nano, Coral Dev
Board, and Raspberry Pi units at the points of
interest along the intersections of and along the
roadside. These devices carry the lightweight
versions of deep learning models that have the
ability to detect vehicles, estimate traffic density,
license plate reading, and estimate speed in real-
time linking measurements where data is actually
gathered. The fact that this local processing
minimizes the amount of raw video captured and
transmitted to the cloud greatly limits the size of
uncompressed video data which then guarantees
ultra-low latency to time-sensitive traffic events
such as accidents, violations, or congestion build-
up. The Cloud Layer is targeted at data
aggregation, long-term storage, and training of
interesting deep learning models on huge
historical traffic data. It uses special clusters of
high-performance GPUs to train and subsequently
correct models including Graph Convolutional
Networks (GCNs) to connect spatial traffic and
models composed of LSTM or Transformers to
forecast trends. Such a layer also facilitates global
optimization such as in adaptive signal timing,
congestion prediction, multi-node traffic routing at
the scale of the wurban networks. The
Communication Layer promotes bi-directional
interaction and low-latency connection between
cloud and edge layers. Employing high-bandwidth
and ultra-reliable communication technologies like
the 5G, this level makes it feasible to exchange
real-time inference outputs, sensor response and
model updates with no bottlenecks. These three
layers can be integrated into a single architecture
which supports both distributed and centralized
intelligence, and hence the combination produces a
dual-character (hybrid) system which can deliver
responsive local decision capabilities, using
globally optimized strategies. The structure of this
design is informative in that it adequately
moderates the primal constraints of classic
centralized systems, e.g. latency, bandwidth
overheads, and falling-down points, and is able to
get the most out of contemporary Al applications
in city commerce traffic situations.
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Figure 2. Cloud-Edge Layered Architecture

3.2 Workflow

The proposed cloud edge hybrid deep learning
framework has a workflow that is based on a
comprehensive pipeline allowing the efficient
processing of data, learning, and knowledge on the
one hand and making intelligent decisions and
enhancing the models on the other hand in
distributed urban settings. This process starts with
data collection whereby, heterogeneous group of
sensors; surveillance cameras, LiDAR, GPS
modules as well as loop detectors are installed at
intersections and road segments to collect real
time multimodal traffic data including vehicle
counts, speed, lane occupancy as well as
congestion level. These streams of data are
analyzed locally on their inference level where
optimized deep learning algorithms, including
Compact Convolutional Neural Networks (CNN)
and pruned models of YOLOvS, implement the task
instantly, including object detection, vehicle
classification, and even preliminary study of the
situation on the road. Such edge deployed models
are chosen so as to maintain the balance of
computational efficiency and accuracy of the
inference making the response of the model low-
latency and with low overhead on hardware. After

processing the structured and filtered data, they
are relayed to the cloud layer where cloud
aggregation and training would be performed.
During this phase, the time-series data will be
gathered in huge amounts across several edge
nodes, becoming the training data of complex
spatio-temporal models, including Spatio-
Temporal Graph Convolutional Networks (ST-
GCNs), LSTM, and Transformer-based structures.
These models discover spatial relationships among
traffic nodes and temporal patterns of evolution to
forecast the state of the future traffic, identify
abnormality, and compose signal coordination
schemes. The last process in the working process
includes the distribution of the model update,
which implies that it is regularly or dynamically
transmitted to the edge devices with the new
trained or refined models. This feedback system
makes the whole system to remain receptive
towards the changing traffic patterns, seasonal
fluctuations, and infrastructure alterations thereby
making it form a very strong and flexible traffic
management system, which wuses both local
intelligence and central learning to guarantee
results.
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Figure 3. Hybrid Traffic Management Workflow

4. METHODOLOGY

This section outlines the design, implementation,
and evaluation methodology for the proposed
hybrid framework.

4.1 Edge-Side Set-up

The edge-side configuration forms the base tier of
the new cloud-edge deep learning hybrid
architecture that allows carrying out analysing
traffic in real-time and making decisions locally,
where data is produced. The components of this
layer include a network of energy-efficient, Al-
pervasive desktop computers including the NVIDIA
Jetson Xavier NX and the Raspberry Pi 4 with
Google Coral TPU accelerator. Such devices are
chosen with a careful consideration of the level of
computational efficiency, power consumption, and

frameworks, which is why they are suitable to be
used in an environment with limited resources.
The edge units, strategically located at potentially
critical traffic locations, i.e., intersection, arterial
roadways, and highway-access points, are the first
line of real-time data manipulation.

The edge layer is integrated with various sensors
in order to capture the overall ecosystem of traffic.
These consist of high-composition IP cameras to
inspect the video traffic, ultrasonic sensors to
gauge the proximate detection of a vehicle and GPS
modules to notice geospatial fitness data and also
velocity. The multi sensor fusion makes the system
robust in the sense that most of the environmental
conditions and traffic complexities it deals with
can be dealt with in a better manner with
enhanced accuracy and resilience.
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Figure 4. Edge-Side Inference and Data Flow Architecture
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Lightweight, optimized, software on each edge
device allows inference to be performed on the
device to support on-device inference. The stack
comes with TensorFlow Lite to deploy quantized
or compressed neural networks, OpenCV to
process videos and images in real time, and the
ONNX Runtime to run models exported with little
overhead by a variety of training frameworks.
With this configuration the edge nodes conduct
mission-critical activities, vehicle detection, lane
occupancy measurement, traffic density
classification and incident recognition all with
strict latency constraints and commonly within
less than 100 milliseconds response time.

In addition to that, due to the goal of
communication overhead reduction and greater
scalability, the edge layer will be dealing with an
initial preprocessing and compression of the data
as well. Instead of relaying full-resolution video
streams, only structured results of interest (e.g.
vehicle count, timestamp, and traffic states) are
relayed to the cloud where aggregation and model
training can be further performed. Such smart
division of labor between the edge and cloud does
not only save bandwidth but also means that they
can react to traffic events, e.g., the occurrence of
congestion or accidents, much more rapidly.
Finally, the edge-side configuration equips the
system with spectrum-level agility and low-latency
intelligence and this will establish the backbone of
a responsive, distributed, and scalable traffic
management platform.
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4.2 Cloud-Side Setup

The high-capacity backbone of analytical side of
the proposed cloudedge hybrid deep learning
architecture is the cloud-side setup, which is
expected to perform complex calculations,
coordinate and organize global traffic intelligence,
as well as manage global coordination in the edge
network. To serve these requirements this layer
utilizes performance computing, namely Amazon
Web Services (AWS) EC2 P3 instances with NVIDIA
V100 GPUs. The available resources offer large
amounts of scalable and parallelized computing
resources necessary to train complex deep
learning with the large amounts of traffic data
collected across edge devices and archives.

The characteristic feature of the cloud is a multi-
model training pipeline that is meant to learn
spatial and temporal relations within urban traffic
systems. Herein are the Long Short-Term Memory
(LSTM) networks that can simulate time-
contingent traffic time series and predict short-
term traffic flow. The system uses Graph
Convolutional Networks (GCNs) to model the more
complex spatial correlation between intersections,
road segments and traffic signals- with the ability
to describe the urban road network as a graph.
Moreover, the cloud wuses Temporal Fusion
Transformers (TFTs) to perform multimodal time-
series prediction. TFTs can combine multiple data
types, like traffic flow, weather, future events, out-
of-context anomalies, and so on, giving a traffic
prediction model more breadth and depth.

Cloud Storage

GCN
Training

TFT
Forcascling

8 Orchestration
Module

Distributed via Horovod /

Edge Devices

PyTorch Lightning

Figure 5. Cloud-Side Model Training Pipeline

Such models are trained with the combination of
historical data that is available in the form of past
archival datasets, as well as real-time data
transmitted by edge devices. Training is performed
with the help of scalable, modular frameworks,
such as PyTorch Lightning, which makes
experimenting and code management easy. To
increase speed of convergence and distributed
learning amongst a set of GPUs or instances,
Hooved is used as it has been able to facilitate

synchronous update of the gradient along with
multiple node training, which is essential in scaling
the model to metropolitan sizes.

Along with model training, the cloud layer acts as
cloud storage systems which process massive
volumes of time-series traffic data, structured
sensor inputs, pre-processed edge outputs and
model checkpoints. After the training or fine-
tuning is done, models get compressed using
methods including knowledge distillation and
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quantization and then re-usable in the edge
devices in a format that is optimized to infer on the
device. It is a bi-directional work process that
makes it possible to have the newest and the
world-wide optimized intelligence available to
edge nodes and at the same time to be responsive
atalocal level.

In addition to training, the cloud can also take the
centralized orchestration role to aggregate the
information of other nodes to track the macro-
level trends in traffic, sign system-wide alerts, and
execute coordinated measures, such as adaptive
signal timing or congestion rerouting. The
combination of edge-to-edge intelligence and
responsiveness in clouds allows significant scale of
the system to be made efficiently without
compromising the maintenance of accuracy,
flexibility, and real time response in the fields of
urban traffic.

4.3 Data Pipeline

The proposed cloudedge hybrid deep learning
framework relies on the data pipeline, the key
element of performing a structurized and seamless
movement of traffic data between the cloud and
edge tiers. This data is acquired in real-time by
harvesting video streams of traffic and device
sensor data of IP cameras, ultrasonic sensors and
GPS modules at the edge. Edge nodes execute small

inference models that find and identify vehicles,
speed, and identify the possible incidents. Raw
video frames are not directly sent as the amount of
bandwidth used could be minimised and efficient
transmission could be achieved. The results,
rather, are packed into ordered forms like JPEG in
the case of image snapshots and JSON in the case of
metadata (e.g., the number of objects, timestamps,
GPS positioning, and sensor indicators). These
small amounts of data packets are relayed to the
cloud on a periodic basis, or an event-driven basis,
which depends on the traffic dynamics, and
network conditions.

After it has been received at the cloud, data goes
through a combination of various steps to be
altered. It is (initially performed the batch
aggregation, in which the edge inputs are collected
by various locations to be converted into a joint
time-series dataset. This is then followed by
feature normalization which is done by
normalizing continuous variables of the problem
such as vehicle counts, speed and lane occupancy
into a standardized scale to make all the model
inputs compatible and make the training more
efficient. Simultaneously, data labeling are
conducted with rule-based heuristics, or human-
verified annotations in particular supervised
learning tasks, e.g., congestion classification or
incident detection.

_
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Figure 6. Cloud-Edge Traffic Data Pipeline

In order to achieve the healthy and scalable
performance of the models, the pipeline uses
70/30 split in training/validation data, which is
common with deep learning pipelines. This
division is used on two real-world traffic data sets
that are widely accepted: METR-LA that consists of
loop sensor traffic speed data in Los Angeles
highways and a large-scale dataset called CityFlow
that contains synchronized video, GPS and signal
time data at intersections of the urban areas. The
combination of these datasets and the data
produced by the edges constitute one of the

cornerstones to the creation of spatio-temporal
models that can be both precise and flexible
enough to fit into the real world urban setting. This
hybrid data pipeline can be considered as a
compromise  between responsiveness and
accuracy, and it is also suitable to regular learning
within the cloud-edge ecosystem.

4.4 Evaluation Metrics

In order to fully evaluate the effectiveness of the
developed core object cloud-edge integrated deep
learning solution in the field of real-time
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management of traffic, a wide range of assessment
parameters is utilized. such metrics are selected to
convey the effectiveness of the system both on the
operational performance and the predictive
performance of the system. Latency, having a unit
of milliseconds (ms), is one of the main measures
of performance, measuring the duration of data
collection in the edge to final inference result or
decision. Real-time traffic systems require low-
latency, and, in particular, time-sensitive
applications (i.e, incident detection, adaptive
signal control, and emergency vehicle priority)
require low latency. The framework aims at edge
inferences below 100 ms to respond in time. The

commonly measured in megabytes per second
(MB/s) that reflects the amount of load transferred
between the edge nodes and the cloud. Application
of this metric both prior and after edge-side
preprocessing (e.g. image compression and
metadata encoding) allows to measure the
efficiency of the system to reduce network
congestion and enhance scalability. Inference
accuracy is a percentage value that measures the
accuracy of deployed models in edge devices and
cloud to detect and label traffic conditions. This
comprises operations like vehicle and location,
different types of congestions and different types
of traffic flow. Increased accuracy will directly

other important metric is bandwidth wusage reflect on better decision and control of traffic.
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Figure 7. Performance Comparison: Edge vs Cloud vs Hybrid Frameworks

The Mean Absolute Error (MAE) is applicable in
predictive modeling to assess the performance of
time-series predictor (LSTM, GCN, or a
Transformer). MAE gives an indication of the
magnitude of the average of the error in traffic
flow predictions regardless of direction, so it is
used in cases where the traffic variable is
continuous (e.g. vehicle count or speed). Finally,
the framework is tested regarding the traffic
incident detection with the help of precision and
recall measures. Precision describes the accuracy
of correctly identified incidents out of all the
incidents which were identified, whereas recall

describes the tendency to capture all the existing
incidents in the dataset. Values that are high in
both the values are also considered to represent a
balanced and trusted detection mechanism, which
is necessary in safety-critical applications. All these
evaluation metrics would give a complete picture
of the responsiveness, communication efficiency,
detection accuracy, and predictive reliability of the
system in real-time, assuring that the hybrid
framework achieves its success condition covering
the requirements of the modern intelligent
transportation systems adequately.

Table 1. Evaluation Metrics for Assessing the Performance of the Cloud-Edge Hybrid Traffic Management

Framework
Metric Description Target/Threshold
Latency Time from sensor input to edge inference output | <100 ms
Bandwidth Usage Data transmission between edge and cloud Optimized via compression
Inference Accuracy Correct vehicle/event classification at edge/cloud | High (> 90%)
MAE (Prediction Error) | Avg. error in predicted traffic flow (vehicles/min) | Low (e.g., ~5)
Precision Ratio of true positives to all detected events High (> 90%)
Recall Ratio of true positives to all actual events High (> 90%)
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5. Deep Learning Components

The suggested cloud-edge hybrid system takes
advantage of a package of deep learning models
adequately fitted to traffic analysis, as the system
offers the best of both worlds by applying the
speed of the edge inference to the accuracy and
scaling of cloud-based training. Real-time
detection of vehicles, capacities to determine lane
occupancy and speed, etc, are executed at the edge
layer  using  lightweight and  quantized
Convolutional Neural Networks (CNNs). The
models are optimized through model pruning,
quantization to fit within memory and
computation footprint and to be suitable to run on
resource-constrained hardware like as NVIDIA
Jetson Nano and Coral TPUs. Besides CNNs, the
algorithm works on real-time object tracking,
which means that the system can follow the traffic
flow around the clock and identify its anomalies or
possible incidents during development. The high-
capacity and MT issues are trained on the cloud
layer across a large-scale of past and present-time
information. They are such LSTM-based sequence
models, which embrace temporal dependencies in
traffic patterns and thus successfully predict future

historical/previous flow statistics. The Graph
Convolutional Networks (GCNs) are used, in case
of spatially-based dependencies, across multiple
intersections or road segments, the traffic network
is presented as a graph and the relationships
between nodes (e.g. road intersections) are
learned. Also, Transformer-based models, e.g. the
Temporal Fusion Transformer (TFT), are exploited
to capture long-term temporal dynamics and
incorporate multimodal information (e.g. weather,
road conditions, events) as input features in traffic
forecasting modalities. To conduct the complex
cloud models to the resource constraints of the
edge devices, the framework deploys methods of
model compression such as knowledge distillation,
where the large teacher model accustoms the small
student model, and structured pruning, which
deletes duplicating weights and layers. Such
methods make sure that models on edges are, yet,
computationally sustainable and of high accuracy.
Together, these layers of a multi-tiered deep
learning backend enables the system to provide
low-latency performance at the edge and excellent
predictive models in the cloud, thus providing the
framework of smart, city-scale traffic management.
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Figure 8. Cloud-Edge Deep Learning Model Hierarchy

6. Case Study: Urban Traffic Scenario

A careful case study conducted using real-word
and benchmark data was therefore used as a
validation of the proposed cloud-edge hybrid deep
learning framework. The assessment involved a
mixture of publicly accessible traffic data namely,
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METR-LA as a repository that houses road sensor
speed data in Los Angeles highways and the City
Flow, a scale-sized dataset that has multi-camera
video feeds in addition to traffic signal metadata.
System deployment showed live video streams run
through optimized CNN and YOLOv8 models, at the
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edge, whereas the grouped data was temporarily
transferred to the cloud to train global models
using a ST-GCN and LSTM structures. The level of
the performance was measured by several main
metrics Mean Absolute Error (MAE) in order to
evaluate the capability of prediction, inference
latency to show the real-time responsiveness of
the system, bandwidth used to demonstrate the
level of efficiency regarding communication, and
incident response time to demonstrate how the
speed of detecting the anomaly and generating the
notification works. The outcomes proved that the
inference latency of the edge was steady and never
crossed the 100 milliseconds mark, guaranteeing
real-time decision-making abilities at
intersections. The accuracy of the predictions in

the cloud layer reached the MAE of 5.2 vehicles per
minute and surpassed multiple centralised-only
baselines. More so, edge-side preprocessing and
the use of structured data transmission helped to
reduce bandwidth by around 68% which reflects
effectiveness of localised inference and data
compression. Such results demonstrate the
feasibility of potential application of the suggested
hybrid architecture in dealing with real-time traffic
management applications, where the local
reactiveness is balanced against global optimum.
The results also help to highlight the flexibility of
the system in terms of the source of data and
traffic conditions, which makes it highly
accommodating in the real urban mobility
ecosystems today.

Table 2. Performance Metrics from the Urban Traffic Case Study Using the Cloud-Edge Hybrid

Framework
Component Metric Result
Edge Inference Latency 87 ms
Cloud Prediction MAE (vehicles/min) 5.2
Communication Bandwidth Usage 1.3 MB/s (! 68%)
Detection Accuracy Vehicle Classification 93.4%
Alerting Incident Response Time < 5 seconds

7. RESULTS AND DISCUSSION

7.1 Performance Metrics

The metrics collected in terms of performance
evaluation of the suggested cloud edge deep
learning framework points to the high real-time
performance and predictive accuracy of
fundamental operations of the proposed
implementation. The edge inference process also
exhibited an insignificant latency of only 87
milliseconds to achieve near-instant traffic
situation awareness at the data collection site. The
traffic flow prediction models used in cloud layer
had a Mean Absolute Error (MAE) of 5.2 vehicles
per minute and this shows high accuracy in
predicting the amount of traffic going through
urban corridors. Even the network efficiency of the
system was rather impressive as bandwidth usage
was decreased down to 1.3 MB/s as a result of
edge-side preprocessing data compression, the
necessity of local preprocessing can hardly be
overstated. Regarding the recognition tasks, the
framework decided on a vehicle at an accuracy
rate of 93.4%, supporting the reliability of the
models embedded in it through the object
detection task. Moreover, less than 5 seconds
delayed the system as far as its ability to react to
the traffic anomaly in real-time was concerned.
The overall result is a confirmation to the claim
that the system is capable of supporting intelligent,
low latency and bandwidth efficient traffic
management across the smart city setting.

7.2 Observations

The suggested cloud-edge hybrid design proved
outstanding when it comes to maintainability in
responsivity, precision, and efficiency in overall
real-time traffic control scenarios. Offloading
computationally light (but still critical) tasks - i.e.
vehicle detection and congestion identification - to
the edge devices, the overall system always met
100ms-latency requirement, thus it is very suitable
to be deployed in a real-time control on a traffic
intersection. Centralized training of the model in
the cloud layer with the use of previous traffic data
proved to boost the accuracy of the prediction a lot
and was especially noticeable in the case of
dynamic changes in routing and crowded hours.
Also, edge-side data preprocessing and data
compression  significantly =~ minimized  the
bandwidth-per-kilometer so that the system could
scale to larger networks in the urban areas without
overloading  communications  infrastructure.
Notably, the architecture was highly adaptive, and,
in real-time, finely adjusted its models according to
data changes and real-time feedback, thus,
efficiently maintaining and controlling the traffic
flows within various, as well as changing traffic
density levels at different intersections. Such a
division of decentralized intelligence and
centralized optimality strength the applicability of
the framework to be applied in the next generation
smart city systems.
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7.3 Comparative Analysis

In comparison to the classic cloud-only and edge-
only deployments, the suggested hybrid cloud-
edge architecture provides a great improvement in
the performance of the critical traffic management
dimensions. In particular, the average response
time decreased by 26% due to the optimal
allocation of computational resourcefulness, or
rather the placement of time-sensitive processing
responsibilities to the edge and placing more
complicated learning duties to the cloud.
Moreover, through the application of effective
edge-side preprocessing strategies, the system
saved a total of 68 percent of bandwidth as
compared to the traditional strategies that depend
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on full raw video streaming to central servers. Not
only does it relieve the network heavily, but also
allows it to be scalable (real-time) over a larger
field of deployment. Moreover, the hybrid
framework realized 11 percent in margin of
prediction better than edge-only LSTM model
using cloud-enabled training with more enhanced
historic sets as well as high-level spatio-temporal
learning modules. These enhancements highlight
the hybrid model to more widely provide a
balanced high-performance experience that
provides the popularity of low latency edge
computing but adding the might of advanced
analytics that a cloud framework can provide.

Cloud-Only
—-®- Edge-Only
—a— Hybrid

Latency (ms)

Bandwidth (MB/s)

Prediction Accuracy (%)

Figure 9. Comparative Performance of Cloud-Only, Edge-Only, and Hybrid Frameworks

Table 3. Comparative Performance Metrics Table

Metric Cloud-Only Edge-Only Hybrid (Proposed)
Latency (ms) 210 98 87

Bandwidth Usage (MB/s) 4.1 2.5 1.3

Prediction Accuracy (%) 82 88 93

Response Time | a€” a€” 26

Improvement (%)

Bandwidth Reduction (%) a€” at€” 68

Accuracy Gain Over Edge- | a€” a€” 11

Only (%)

8. CONCLUSION

The paper provides a strong and elastic cloud-edge
hybrid architecture deep learning framework that
is geared toward real-time management of the
traffic in intelligent transportation systems. The
proposed architecture can support scalable system
requirements to encounter important limitations
to the latency, network bandwidth usage, and
computing complexity by means of edge
computing that provides low-latency inference
capabilities and cloud processing with high-

Electronics, Communications, and Computing Summit | Apr -

capacity model training and coordination. The
edge layer enables the embedded devices to carry
out on-demand tasks like detection of vehicle and
congestion analysis within an embedded device to
promote speedy decision making at the point of
data generation. At the same time, the cloud level
enables the long-term learning and global
optimization process with complex models such as
LSTM, GCN, and Transformer architecture, which

uses the large-scale historical data. Such
distributed, combined intelligence makes it
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capable of persistent adaptation to changing traffic
dynamics to provide superior prediction accuracy,
bandwidth efficiency, and latency responsiveness
than a cloud-only or an edge-only system. The real-
world datasets like METR-LA and CityFlow were
used to experimentally validate the ability of the
system to support a wide range of urban
environments and still provide sub-100 ms end-to-
end latency coupled with more than 68 percent
bandwidth reduction. Besides, the modularity and
flexibility of the framework are suitable to
considering the size of the framework to multiple
interconnections, and therefore is well applicable
to the increasing requirements of future smart
cities. With the growth of urban mobility systems,
this hybrid solution can provide an excellent basis
to incorporate more intelligence to the system,
including autonomous vehicle coordination and
V2X communication, which would give further
support that this solution has a potential to
become a future-proof model of sustainability and
intelligent traffic management.
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