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 Traffic in the city is a challenge that has serious repercussions as far as 
loss of money, environmental depreciation, and accidents are 
concerned. This paper proposes an end-to-end cloud and edge 
computing hybrid deep learning architecture suitable in managing 
traffic in intelligent transportation systems in real-time in order to 
counter these problems. The given framework will find the synergy of 
edge computing and centralized cloud resources in a bid to learn model 
optimization in a low-latency manner, maximizing scalability. On the 
edge, object detection models (like YOLOv8) and lightweight 
convolutional neural networks (CNNs) are implemented on embedded 
devices to allow in real-time analysis of a video that may be used to 
detect a vehicle, estimate traffic levels, or monitor incidents in 
intersections. In the meantime, the layer of the clouds is used to train 
big models and coordinate at the world level utilizing the information of 
historical traffic regimens using spatio-temporal deep learning models, 
such as Graph Convolutional Networks (GCN), Long Short-Term 
Memory (LSTM) networks, or Transformer-based architectures to 
predict the future of the traffic flows and inform the strategy. The 
effective task offloading, the synchronization of data, and the update of 
the model periodically are provided due to a dynamic communication 
mechanism between the edge and cloud nodes. The framework also 
reuses model compression methods to allow the compatibility of edge 
devices without sacrificing prediction performance. The cameras, GPS, 
and roadside units are fused with multi-modal sensor fusion which 
makes the data in use robust and decisions reliable. Real-world 
experiments on METR-LA, and CityFlow indicate that the proposed 
hybrid system can generate a 26% incident response time 
advancement, over 65% bandwidth utilization decrease because of edge 
preprocessing, and prediction surpassing the conventional constituent 
server-only or exclusively edge solutions. In addition to that, the 
architecture can consider flexibility to changing traffic demands and 
scalability to multi junction implementations. The article highlights the 
exciting possibilities of distributed intelligence as an approach to 
current mobility systems in urban setting and paves the way to 
integrating distributed intelligence with autonomous vehicles and 
vehicle-to-everything (V2X) technologies in the future, conferring on 
the former its suitability as one of the solutions employed in the second 
generation of smart cities. 
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1. INTRODUCTION 
The high rate of urbanization and motorization has 
caused traffic congestion to escalate significantly, 
posing a lethal consequence on environmental 
sustainability, the development of the economy, 
and overall health of the population. In the reports 
on global mobility, it was argued that the traffic 
conditions in the urban centers have been causing 
air pollution, fuel wastage and a worsening state of 
living conditions. Besides, the problematic 

management of traffic flow may lead to a delay in 
delivering emergency and logistics services, 
increasing both the social and financial load. 
The conventional system of traffic management 
has been majorly centralized where decisions are 
made and monitoring is done in the data centers. 
The system obtains traffic data via the city 
distributed cameras and sensors and sends them 
to centralized servers in which supply-absorbing 
tasks like prediction of traffic occur, detection of 
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incidents and optimization of signaling processes 
are completed. Although centralized systems enjoy 
a high level of computational power, they are 
naturally constrained by latency of the network, 

single points of failure, difficulty in scaling as well 
as bandwidth-intensive, especially in adapting to 
dynamic traffic flows and require a quick response 
time to the environment. 

 

 
Figure 1. Cloud–Edge AI Architecture for Traffic Management 

 
To overcome these shortcomings, the recent 
development of edge computing and artificial 
intelligence (AI) promise to be helpful. The major 
advantage of edge computing is that it adds 
computational capacity near the point of data 
collection, allowing low-latency inference by 
lessening cloud-reliance. Meanwhile, deep learning 
technology has already become a strong candidate 
in the traffic prediction, object detection and 
anomaly sighting, learning complex spatio-
temporal patterns in large-scale sensor data. 
Nonetheless, performing deep learning models 
only on the edge devices is limited by constraints 
on resources, including processing power, 
memory, and energy. 
In this paper, a new cloud-edge hybrid deep 
learning model is suggested to jointly harness the 
power of edge computing and cloud intelligence to 
realize real-time, scalable and intelligent 
management of traffic. Analysis of the edge layer 
executes lightweight video analytics to make on-
time decisions, the cloud layer has to accomplish 
big model training, world optimization, and 
harmonization. Multi-modal sensor fusion, secure 
data sharing, adaptive model distribution, and 
ability to create resilient and resource efficient 
architecture towards traffic applications in smart 
cities have been implemented through the system. 
By doing so, this framework will be able to bridge 
the performance difference between 

responsiveness and computational capacity and 
thus have the capability of exercising proactive 
traffic control allowing overall mobility in the 
urban environment. 
 
2. RELATED WORK 
The integration of artificial intelligence (AI), edge 
computing, and cloud infrastructure have changed 
the nature of the discipline of intelligent traffic 
management. In this section, recent developments 
along three large axes, those of edge AI to monitor 
traffic, cloud-based models of traffic prediction, 
and hybrid cloud and edge-based solutions, are 
discussed. 
 
2.1 Traffic Monitoring using Edge AI 
Innovations in edge computing have become 
trailblazers in the real-time analysis of traffic, 
providing high speeds and low latency data 
processing nearby at its origin. Empowered with 
AI accelerators, technologies such as NVIDIA 
Jetson, Google Coral, and Raspberry Pi are 
currently utilized in a wide range of applications, 
including detecting vehicles, understanding the 
license plates, and estimating the traffic density on 
the spot at a given intersection point. As an 
example, a fog-based architecture was suggested 
by Yu et al. [1] wherein the YOLO-based object 
detection models were deployed to the edge 
devices to conduct on-site classification of vehicles 
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and congestion evaluation. Through their system, 
there was a significant amount of latency reduction 
that was not possible with cloud-only strategies. 
Equally, Qolomany et al. [2] provided an edge-
based approach on the TensorFlow Lite 
framework that runs anomalous detections of a 
traffic flow on embedded devices in real-time 
which illustrates that inference locally is minimal 
in terms of the communication. 
 
2.2 Traffic prediction in the cloud 
Although edge systems offer low latency, cloud 
computing still occasions training and developing 
complex models with giant-scale historical data. 
Serving deep learning models Deep learning-based 
models can be executed by cloud-based solutions 
with high-performance computing architecture, 
including architectures like Long Short-Term 
Memory (LSTM) networks, Graph Convolutional 
Networks (GCNs), and Trans Former-based 
models. Li et al. [3] wrote about DCRNN as 
diffusion convolutional recurrent neural networks 
that model spatial and temporal relations 
throughout the traffic flow data over the urban 
road networks. In a different paper, Wu et al. [4] 
created a Graph WaveNet model to predict traffic 
with adaptive graph networks and dilated 
convolutions. High accuracy of predictions can be 
achieved in those centralized models but they 
cannot be typically deployed in real time because 
of inference delays and strong requirements to 
connectivity stability. 
 
2.3 Hybrid Cloud Edge Architectures 
The hybrid cloud-edge solutions have been 
proposed to overcome edge-only and cloud-only 
platform limitations, with the tasks being 
partitioned between the situations of edge and 
cloud. Zhang et al. [5] put forward a cloud rivetting 
edge system where object detection was carried 
out in the edge and deep analysis and training was 
done in the cloud. This setup lowered the response 
time and lowered traffic on the network. In 
addition, Alam et al. [6] considered a hybrid traffic 
model based on federated learning in which data 
privacy could be ensured but the coordination of 
training the model was done between the 
distributed edge nodes. Their solution proved to 
be resilient in the presence of heterogeneous 
environment and flexible to the traffic behavior of 
regions. 
In conclusion, when edge AI allows designing 
responsive systems in real-time, and cloud 
collection can be used to perform precise long-
term predictions, hybrid architectures represent a 
potentially interesting trade-off promoting the 
combination of distributed intelligence and 
centralized optimisation. Such works form the 
basis of this paper where we propose the use of 

multi-modal sensor fusion, spatio-temporal 
modeling and adaptive model distribution in an 
integrated cloud-edge deep learning framework 
that is focused on real-time traffic management in 
smart cities. 
 
3. System Architecture 
3.1 Overview 
The offered architecture is designed according to 
three functional layers or parts namely Edge Layer, 
Cloud Layer, and Communication Layer, each of 
which intricately and dedicatedly contributes to 
the real-time, smart traffic management. The Edge 
Layer operates on resource-constrained embedded 
devices that place NVIDIA Jetson Nano, Coral Dev 
Board, and Raspberry Pi units at the points of 
interest along the intersections of and along the 
roadside. These devices carry the lightweight 
versions of deep learning models that have the 
ability to detect vehicles, estimate traffic density, 
license plate reading, and estimate speed in real-
time linking measurements where data is actually 
gathered. The fact that this local processing 
minimizes the amount of raw video captured and 
transmitted to the cloud greatly limits the size of 
uncompressed video data which then guarantees 
ultra-low latency to time-sensitive traffic events 
such as accidents, violations, or congestion build-
up. The Cloud Layer is targeted at data 
aggregation, long-term storage, and training of 
interesting deep learning models on huge 
historical traffic data. It uses special clusters of 
high-performance GPUs to train and subsequently 
correct models including Graph Convolutional 
Networks (GCNs) to connect spatial traffic and 
models composed of LSTM or Transformers to 
forecast trends. Such a layer also facilitates global 
optimization such as in adaptive signal timing, 
congestion prediction, multi-node traffic routing at 
the scale of the urban networks. The 
Communication Layer promotes bi-directional 
interaction and low-latency connection between 
cloud and edge layers. Employing high-bandwidth 
and ultra-reliable communication technologies like 
the 5G, this level makes it feasible to exchange 
real-time inference outputs, sensor response and 
model updates with no bottlenecks. These three 
layers can be integrated into a single architecture 
which supports both distributed and centralized 
intelligence, and hence the combination produces a 
dual-character (hybrid) system which can deliver 
responsive local decision capabilities, using 
globally optimized strategies. The structure of this 
design is informative in that it adequately 
moderates the primal constraints of classic 
centralized systems, e.g. latency, bandwidth 
overheads, and falling-down points, and is able to 
get the most out of contemporary AI applications 
in city commerce traffic situations. 
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Figure 2. Cloud–Edge Layered Architecture 

 
3.2 Workflow 
The proposed cloud edge hybrid deep learning 
framework has a workflow that is based on a 
comprehensive pipeline allowing the efficient 
processing of data, learning, and knowledge on the 
one hand and making intelligent decisions and 
enhancing the models on the other hand in 
distributed urban settings. This process starts with 
data collection whereby, heterogeneous group of 
sensors; surveillance cameras, LiDAR, GPS 
modules as well as loop detectors are installed at 
intersections and road segments to collect real 
time multimodal traffic data including vehicle 
counts, speed, lane occupancy as well as 
congestion level. These streams of data are 
analyzed locally on their inference level where 
optimized deep learning algorithms, including 
Compact Convolutional Neural Networks (CNN) 
and pruned models of YOLOv8, implement the task 
instantly, including object detection, vehicle 
classification, and even preliminary study of the 
situation on the road. Such edge deployed models 
are chosen so as to maintain the balance of 
computational efficiency and accuracy of the 
inference making the response of the model low-
latency and with low overhead on hardware. After 

processing the structured and filtered data, they 
are relayed to the cloud layer where cloud 
aggregation and training would be performed. 
During this phase, the time-series data will be 
gathered in huge amounts across several edge 
nodes, becoming the training data of complex 
spatio-temporal models, including Spatio-
Temporal Graph Convolutional Networks (ST-
GCNs), LSTM, and Transformer-based structures. 
These models discover spatial relationships among 
traffic nodes and temporal patterns of evolution to 
forecast the state of the future traffic, identify 
abnormality, and compose signal coordination 
schemes. The last process in the working process 
includes the distribution of the model update, 
which implies that it is regularly or dynamically 
transmitted to the edge devices with the new 
trained or refined models. This feedback system 
makes the whole system to remain receptive 
towards the changing traffic patterns, seasonal 
fluctuations, and infrastructure alterations thereby 
making it form a very strong and flexible traffic 
management system, which uses both local 
intelligence and central learning to guarantee 
results. 
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Figure 3. Hybrid Traffic Management Workflow 

 
4. METHODOLOGY 
This section outlines the design, implementation, 
and evaluation methodology for the proposed 
hybrid framework. 
 
4.1 Edge-Side Set-up 
The edge-side configuration forms the base tier of 
the new cloud-edge deep learning hybrid 
architecture that allows carrying out analysing 
traffic in real-time and making decisions locally, 
where data is produced. The components of this 
layer include a network of energy-efficient, AI-
pervasive desktop computers including the NVIDIA 
Jetson Xavier NX and the Raspberry Pi 4 with 
Google Coral TPU accelerator. Such devices are 
chosen with a careful consideration of the level of 
computational efficiency, power consumption, and 
support of the most current deep learning 

frameworks, which is why they are suitable to be 
used in an environment with limited resources. 
The edge units, strategically located at potentially 
critical traffic locations, i.e., intersection, arterial 
roadways, and highway-access points, are the first 
line of real-time data manipulation. 
The edge layer is integrated with various sensors 
in order to capture the overall ecosystem of traffic. 
These consist of high-composition IP cameras to 
inspect the video traffic, ultrasonic sensors to 
gauge the proximate detection of a vehicle and GPS 
modules to notice geospatial fitness data and also 
velocity. The multi sensor fusion makes the system 
robust in the sense that most of the environmental 
conditions and traffic complexities it deals with 
can be dealt with in a better manner with 
enhanced accuracy and resilience. 

 

 
Figure 4. Edge-Side Inference and Data Flow Architecture 
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Lightweight, optimized, software on each edge 
device allows inference to be performed on the 
device to support on-device inference. The stack 
comes with TensorFlow Lite to deploy quantized 
or compressed neural networks, OpenCV to 
process videos and images in real time, and the 
ONNX Runtime to run models exported with little 
overhead by a variety of training frameworks. 
With this configuration the edge nodes conduct 
mission-critical activities, vehicle detection, lane 
occupancy measurement, traffic density 
classification and incident recognition all with 
strict latency constraints and commonly within 
less than 100 milliseconds response time. 
In addition to that, due to the goal of 
communication overhead reduction and greater 
scalability, the edge layer will be dealing with an 
initial preprocessing and compression of the data 
as well. Instead of relaying full-resolution video 
streams, only structured results of interest (e.g. 
vehicle count, timestamp, and traffic states) are 
relayed to the cloud where aggregation and model 
training can be further performed. Such smart 
division of labor between the edge and cloud does 
not only save bandwidth but also means that they 
can react to traffic events, e.g., the occurrence of 
congestion or accidents, much more rapidly. 
Finally, the edge-side configuration equips the 
system with spectrum-level agility and low-latency 
intelligence and this will establish the backbone of 
a responsive, distributed, and scalable traffic 
management platform. 
 

4.2 Cloud-Side Setup 
The high-capacity backbone of analytical side of 
the proposed cloudedge hybrid deep learning 
architecture is the cloud-side setup, which is 
expected to perform complex calculations, 
coordinate and organize global traffic intelligence, 
as well as manage global coordination in the edge 
network. To serve these requirements this layer 
utilizes performance computing, namely Amazon 
Web Services (AWS) EC2 P3 instances with NVIDIA 
V100 GPUs. The available resources offer large 
amounts of scalable and parallelized computing 
resources necessary to train complex deep 
learning with the large amounts of traffic data 
collected across edge devices and archives. 
The characteristic feature of the cloud is a multi-
model training pipeline that is meant to learn 
spatial and temporal relations within urban traffic 
systems. Herein are the Long Short-Term Memory 
(LSTM) networks that can simulate time-
contingent traffic time series and predict short-
term traffic flow. The system uses Graph 
Convolutional Networks (GCNs) to model the more 
complex spatial correlation between intersections, 
road segments and traffic signals- with the ability 
to describe the urban road network as a graph. 
Moreover, the cloud uses Temporal Fusion 
Transformers (TFTs) to perform multimodal time-
series prediction. TFTs can combine multiple data 
types, like traffic flow, weather, future events, out-
of-context anomalies, and so on, giving a traffic 
prediction model more breadth and depth. 

 

 
Figure 5. Cloud-Side Model Training Pipeline 

 
Such models are trained with the combination of 
historical data that is available in the form of past 
archival datasets, as well as real-time data 
transmitted by edge devices. Training is performed 
with the help of scalable, modular frameworks, 
such as PyTorch Lightning, which makes 
experimenting and code management easy. To 
increase speed of convergence and distributed 
learning amongst a set of GPUs or instances, 
Hooved is used as it has been able to facilitate 

synchronous update of the gradient along with 
multiple node training, which is essential in scaling 
the model to metropolitan sizes. 
Along with model training, the cloud layer acts as 
cloud storage systems which process massive 
volumes of time-series traffic data, structured 
sensor inputs, pre-processed edge outputs and 
model checkpoints. After the training or fine-
tuning is done, models get compressed using 
methods including knowledge distillation and 
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quantization and then re-usable in the edge 
devices in a format that is optimized to infer on the 
device. It is a bi-directional work process that 
makes it possible to have the newest and the 
world-wide optimized intelligence available to 
edge nodes and at the same time to be responsive 
at a local level. 
In addition to training, the cloud can also take the 
centralized orchestration role to aggregate the 
information of other nodes to track the macro-
level trends in traffic, sign system-wide alerts, and 
execute coordinated measures, such as adaptive 
signal timing or congestion rerouting. The 
combination of edge-to-edge intelligence and 
responsiveness in clouds allows significant scale of 
the system to be made efficiently without 
compromising the maintenance of accuracy, 
flexibility, and real time response in the fields of 
urban traffic. 
 
4.3 Data Pipeline 
The proposed cloudedge hybrid deep learning 
framework relies on the data pipeline, the key 
element of performing a structurized and seamless 
movement of traffic data between the cloud and 
edge tiers. This data is acquired in real-time by 
harvesting video streams of traffic and device 
sensor data of IP cameras, ultrasonic sensors and 
GPS modules at the edge. Edge nodes execute small 

inference models that find and identify vehicles, 
speed, and identify the possible incidents. Raw 
video frames are not directly sent as the amount of 
bandwidth used could be minimised and efficient 
transmission could be achieved. The results, 
rather, are packed into ordered forms like JPEG in 
the case of image snapshots and JSON in the case of 
metadata (e.g., the number of objects, timestamps, 
GPS positioning, and sensor indicators). These 
small amounts of data packets are relayed to the 
cloud on a periodic basis, or an event-driven basis, 
which depends on the traffic dynamics, and 
network conditions. 
After it has been received at the cloud, data goes 
through a combination of various steps to be 
altered. It is initially performed the batch 
aggregation, in which the edge inputs are collected 
by various locations to be converted into a joint 
time-series dataset. This is then followed by 
feature normalization which is done by 
normalizing continuous variables of the problem 
such as vehicle counts, speed and lane occupancy 
into a standardized scale to make all the model 
inputs compatible and make the training more 
efficient. Simultaneously, data labeling are 
conducted with rule-based heuristics, or human-
verified annotations in particular supervised 
learning tasks, e.g., congestion classification or 
incident detection. 

 

 
Figure 6. Cloud–Edge Traffic Data Pipeline 

 
In order to achieve the healthy and scalable 
performance of the models, the pipeline uses 
70/30 split in training/validation data, which is 
common with deep learning pipelines. This 
division is used on two real-world traffic data sets 
that are widely accepted: METR-LA that consists of 
loop sensor traffic speed data in Los Angeles 
highways and a large-scale dataset called CityFlow 
that contains synchronized video, GPS and signal 
time data at intersections of the urban areas. The 
combination of these datasets and the data 
produced by the edges constitute one of the 

cornerstones to the creation of spatio-temporal 
models that can be both precise and flexible 
enough to fit into the real world urban setting. This 
hybrid data pipeline can be considered as a 
compromise between responsiveness and 
accuracy, and it is also suitable to regular learning 
within the cloud-edge ecosystem. 
 
4.4 Evaluation Metrics 
In order to fully evaluate the effectiveness of the 
developed core object cloud-edge integrated deep 
learning solution in the field of real-time 
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management of traffic, a wide range of assessment 
parameters is utilized. such metrics are selected to 
convey the effectiveness of the system both on the 
operational performance and the predictive 
performance of the system. Latency, having a unit 
of milliseconds (ms), is one of the main measures 
of performance, measuring the duration of data 
collection in the edge to final inference result or 
decision. Real-time traffic systems require low-
latency, and, in particular, time-sensitive 
applications (i.e., incident detection, adaptive 
signal control, and emergency vehicle priority) 
require low latency. The framework aims at edge 
inferences below 100 ms to respond in time. The 
other important metric is bandwidth usage 

commonly measured in megabytes per second 
(MB/s) that reflects the amount of load transferred 
between the edge nodes and the cloud. Application 
of this metric both prior and after edge-side 
preprocessing (e.g. image compression and 
metadata encoding) allows to measure the 
efficiency of the system to reduce network 
congestion and enhance scalability. Inference 
accuracy is a percentage value that measures the 
accuracy of deployed models in edge devices and 
cloud to detect and label traffic conditions. This 
comprises operations like vehicle and location, 
different types of congestions and different types 
of traffic flow. Increased accuracy will directly 
reflect on better decision and control of traffic. 

 

 
Figure 7. Performance Comparison: Edge vs Cloud vs Hybrid Frameworks 

 
The Mean Absolute Error (MAE) is applicable in 
predictive modeling to assess the performance of 
time-series predictor (LSTM, GCN, or a 
Transformer). MAE gives an indication of the 
magnitude of the average of the error in traffic 
flow predictions regardless of direction, so it is 
used in cases where the traffic variable is 
continuous (e.g. vehicle count or speed). Finally, 
the framework is tested regarding the traffic 
incident detection with the help of precision and 
recall measures. Precision describes the accuracy 
of correctly identified incidents out of all the 
incidents which were identified, whereas recall 

describes the tendency to capture all the existing 
incidents in the dataset. Values that are high in 
both the values are also considered to represent a 
balanced and trusted detection mechanism, which 
is necessary in safety-critical applications. All these 
evaluation metrics would give a complete picture 
of the responsiveness, communication efficiency, 
detection accuracy, and predictive reliability of the 
system in real-time, assuring that the hybrid 
framework achieves its success condition covering 
the requirements of the modern intelligent 
transportation systems adequately. 

 
Table 1. Evaluation Metrics for Assessing the Performance of the Cloud–Edge Hybrid Traffic Management 

Framework 
Metric Description Target/Threshold 
Latency Time from sensor input to edge inference output < 100 ms 
Bandwidth Usage Data transmission between edge and cloud Optimized via compression 
Inference Accuracy Correct vehicle/event classification at edge/cloud High (> 90%) 
MAE (Prediction Error) Avg. error in predicted traffic flow (vehicles/min) Low (e.g., ~5) 
Precision Ratio of true positives to all detected events High (> 90%) 
Recall Ratio of true positives to all actual events High (> 90%) 
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5. Deep Learning Components 
The suggested cloud-edge hybrid system takes 
advantage of a package of deep learning models 
adequately fitted to traffic analysis, as the system 
offers the best of both worlds by applying the 
speed of the edge inference to the accuracy and 
scaling of cloud-based training. Real-time 
detection of vehicles, capacities to determine lane 
occupancy and speed, etc, are executed at the edge 
layer using lightweight and quantized 
Convolutional Neural Networks (CNNs). The 
models are optimized through model pruning, 
quantization to fit within memory and 
computation footprint and to be suitable to run on 
resource-constrained hardware like as NVIDIA 
Jetson Nano and Coral TPUs. Besides CNNs, the 
algorithm works on real-time object tracking, 
which means that the system can follow the traffic 
flow around the clock and identify its anomalies or 
possible incidents during development. The high-
capacity and MT issues are trained on the cloud 
layer across a large-scale of past and present-time 
information. They are such LSTM-based sequence 
models, which embrace temporal dependencies in 
traffic patterns and thus successfully predict future 
traffic conditions, guided by the 

historical/previous flow statistics. The Graph 
Convolutional Networks (GCNs) are used, in case 
of spatially-based dependencies, across multiple 
intersections or road segments, the traffic network 
is presented as a graph and the relationships 
between nodes (e.g. road intersections) are 
learned. Also, Transformer-based models, e.g. the 
Temporal Fusion Transformer (TFT), are exploited 
to capture long-term temporal dynamics and 
incorporate multimodal information (e.g. weather, 
road conditions, events) as input features in traffic 
forecasting modalities. To conduct the complex 
cloud models to the resource constraints of the 
edge devices, the framework deploys methods of 
model compression such as knowledge distillation, 
where the large teacher model accustoms the small 
student model, and structured pruning, which 
deletes duplicating weights and layers. Such 
methods make sure that models on edges are, yet, 
computationally sustainable and of high accuracy. 
Together, these layers of a multi-tiered deep 
learning backend enables the system to provide 
low-latency performance at the edge and excellent 
predictive models in the cloud, thus providing the 
framework of smart, city-scale traffic management. 

 

 
Figure 8. Cloud–Edge Deep Learning Model Hierarchy 

 
6. Case Study: Urban Traffic Scenario 
A careful case study conducted using real-word 
and benchmark data was therefore used as a 
validation of the proposed cloud-edge hybrid deep 
learning framework. The assessment involved a 
mixture of publicly accessible traffic data namely, 

METR-LA as a repository that houses road sensor 
speed data in Los Angeles highways and the City 
Flow, a scale-sized dataset that has multi-camera 
video feeds in addition to traffic signal metadata. 
System deployment showed live video streams run 
through optimized CNN and YOLOv8 models, at the 
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edge, whereas the grouped data was temporarily 
transferred to the cloud to train global models 
using a ST-GCN and LSTM structures. The level of 
the performance was measured by several main 
metrics Mean Absolute Error (MAE) in order to 
evaluate the capability of prediction, inference 
latency to show the real-time responsiveness of 
the system, bandwidth used to demonstrate the 
level of efficiency regarding communication, and 
incident response time to demonstrate how the 
speed of detecting the anomaly and generating the 
notification works. The outcomes proved that the 
inference latency of the edge was steady and never 
crossed the 100 milliseconds mark, guaranteeing 
real-time decision-making abilities at 
intersections. The accuracy of the predictions in 

the cloud layer reached the MAE of 5.2 vehicles per 
minute and surpassed multiple centralised-only 
baselines. More so, edge-side preprocessing and 
the use of structured data transmission helped to 
reduce bandwidth by around 68% which reflects 
effectiveness of localised inference and data 
compression. Such results demonstrate the 
feasibility of potential application of the suggested 
hybrid architecture in dealing with real-time traffic 
management applications, where the local 
reactiveness is balanced against global optimum. 
The results also help to highlight the flexibility of 
the system in terms of the source of data and 
traffic conditions, which makes it highly 
accommodating in the real urban mobility 
ecosystems today. 

 
Table 2. Performance Metrics from the Urban Traffic Case Study Using the Cloud–Edge Hybrid 

Framework 
Component Metric Result 

Edge Inference Latency 87 ms 

Cloud Prediction MAE (vehicles/min) 5.2 

Communication Bandwidth Usage 1.3 MB/s (↓ 68%) 

Detection Accuracy Vehicle Classification 93.4% 

Alerting Incident Response Time < 5 seconds 

 
7. RESULTS AND DISCUSSION 
7.1 Performance Metrics 
The metrics collected in terms of performance 
evaluation of the suggested cloud edge deep 
learning framework points to the high real-time 
performance and predictive accuracy of 
fundamental operations of the proposed 
implementation. The edge inference process also 
exhibited an insignificant latency of only 87 
milliseconds to achieve near-instant traffic 
situation awareness at the data collection site. The 
traffic flow prediction models used in cloud layer 
had a Mean Absolute Error (MAE) of 5.2 vehicles 
per minute and this shows high accuracy in 
predicting the amount of traffic going through 
urban corridors. Even the network efficiency of the 
system was rather impressive as bandwidth usage 
was decreased down to 1.3 MB/s as a result of 
edge-side preprocessing data compression, the 
necessity of local preprocessing can hardly be 
overstated. Regarding the recognition tasks, the 
framework decided on a vehicle at an accuracy 
rate of 93.4%, supporting the reliability of the 
models embedded in it through the object 
detection task. Moreover, less than 5 seconds 
delayed the system as far as its ability to react to 
the traffic anomaly in real-time was concerned. 
The overall result is a confirmation to the claim 
that the system is capable of supporting intelligent, 
low latency and bandwidth efficient traffic 
management across the smart city setting. 
 

7.2 Observations 
The suggested cloud-edge hybrid design proved 
outstanding when it comes to maintainability in 
responsivity, precision, and efficiency in overall 
real-time traffic control scenarios. Offloading 
computationally light (but still critical) tasks - i.e. 
vehicle detection and congestion identification - to 
the edge devices, the overall system always met 
100ms-latency requirement, thus it is very suitable 
to be deployed in a real-time control on a traffic 
intersection. Centralized training of the model in 
the cloud layer with the use of previous traffic data 
proved to boost the accuracy of the prediction a lot 
and was especially noticeable in the case of 
dynamic changes in routing and crowded hours. 
Also, edge-side data preprocessing and data 
compression significantly minimized the 
bandwidth-per-kilometer so that the system could 
scale to larger networks in the urban areas without 
overloading communications infrastructure. 
Notably, the architecture was highly adaptive, and, 
in real-time, finely adjusted its models according to 
data changes and real-time feedback, thus, 
efficiently maintaining and controlling the traffic 
flows within various, as well as changing traffic 
density levels at different intersections. Such a 
division of decentralized intelligence and 
centralized optimality strength the applicability of 
the framework to be applied in the next generation 
smart city systems. 
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7.3 Comparative Analysis 
In comparison to the classic cloud-only and edge-
only deployments, the suggested hybrid cloud-
edge architecture provides a great improvement in 
the performance of the critical traffic management 
dimensions. In particular, the average response 
time decreased by 26% due to the optimal 
allocation of computational resourcefulness, or 
rather the placement of time-sensitive processing 
responsibilities to the edge and placing more 
complicated learning duties to the cloud. 
Moreover, through the application of effective 
edge-side preprocessing strategies, the system 
saved a total of 68 percent of bandwidth as 
compared to the traditional strategies that depend 

on full raw video streaming to central servers. Not 
only does it relieve the network heavily, but also 
allows it to be scalable (real-time) over a larger 
field of deployment. Moreover, the hybrid 
framework realized 11 percent in margin of 
prediction better than edge-only LSTM model 
using cloud-enabled training with more enhanced 
historic sets as well as high-level spatio-temporal 
learning modules. These enhancements highlight 
the hybrid model to more widely provide a 
balanced high-performance experience that 
provides the popularity of low latency edge 
computing but adding the might of advanced 
analytics that a cloud framework can provide. 

 

 
Figure 9. Comparative Performance of Cloud-Only, Edge-Only, and Hybrid Frameworks 

 
Table 3. Comparative Performance Metrics Table 

Metric Cloud-Only Edge-Only Hybrid (Proposed) 
Latency (ms) 210 98 87 
Bandwidth Usage (MB/s) 4.1 2.5 1.3 
Prediction Accuracy (%) 82 88 93 
Response Time 
Improvement (%) 

â€” â€” 26 

Bandwidth Reduction (%) â€” â€” 68 
Accuracy Gain Over Edge-
Only (%) 

â€” â€” 11 

 
8. CONCLUSION 
The paper provides a strong and elastic cloud-edge 
hybrid architecture deep learning framework that 
is geared toward real-time management of the 
traffic in intelligent transportation systems. The 
proposed architecture can support scalable system 
requirements to encounter important limitations 
to the latency, network bandwidth usage, and 
computing complexity by means of edge 
computing that provides low-latency inference 
capabilities and cloud processing with high-

capacity model training and coordination. The 
edge layer enables the embedded devices to carry 
out on-demand tasks like detection of vehicle and 
congestion analysis within an embedded device to 
promote speedy decision making at the point of 
data generation. At the same time, the cloud level 
enables the long-term learning and global 
optimization process with complex models such as 
LSTM, GCN, and Transformer architecture, which 
uses the large-scale historical data. Such 
distributed, combined intelligence makes it 



39                                       Electronics, Communications, and Computing Summit | Apr - Jun 2025 

 

 

Saravanakumar Veerappan et al / Cloud-Edge Hybrid Deep Learning Framework for Real-Time Traffic 
Management 

 
 

capable of persistent adaptation to changing traffic 
dynamics to provide superior prediction accuracy, 
bandwidth efficiency, and latency responsiveness 
than a cloud-only or an edge-only system. The real-
world datasets like METR-LA and CityFlow were 
used to experimentally validate the ability of the 
system to support a wide range of urban 
environments and still provide sub-100 ms end-to-
end latency coupled with more than 68 percent 
bandwidth reduction. Besides, the modularity and 
flexibility of the framework are suitable to 
considering the size of the framework to multiple 
interconnections, and therefore is well applicable 
to the increasing requirements of future smart 
cities. With the growth of urban mobility systems, 
this hybrid solution can provide an excellent basis 
to incorporate more intelligence to the system, 
including autonomous vehicle coordination and 
V2X communication, which would give further 
support that this solution has a potential to 
become a future-proof model of sustainability and 
intelligent traffic management. 
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