Electronics, Communications, and Computing Summit

Vol. 3, No. 2, Apr - Jun 2025, pp. 16-27

ISSN: 3107-8222, DOI: https://doi.org/10.17051/ECC/03.02.03

Energy-Aware Task Scheduling in Heterogeneous GPU/TPU-

FPGA Embedded Platforms

Ashu Nayak?!, Namrata Mishra?

1Assistant Professor, Department of CS & IT, Kalinga University, Raipur, India,

Email: ku.ashunayak@kalingauniversity.ac.in

ZDepartment Of Electrical And Electronics Engineering, Kalinga University, Raipur, India,

Email: namrata.mishra@kalingauniversity.ac.in

Article Info

ABSTRACT

Article history:

Received : 13.04.2025
Revised :15.05.2025
Accepted :17.06.2025

Keywords:

Energy-aware scheduling,
heterogeneous computing,
embedded systems,
GPU-TPU-FPGA,

task mapping,

edge Al,

low-power computing,
real-time systems.

Dynamic performance needed in the edge and embedded systems has
boosted demand of real time energy-efficient computing that requires
integration of heterogeneous hardware accelerators, such as Graphics
Processing Units (GPUs), Tensor Processing Units (TPUs), and Field-
Programmable Gate Arrays (FPGAs). Such varied processing units each
bring both complementary abilities to the table, with GPUs offering vast
parallelism, TPUs specializing in neural-inference, and FPGAs offering
low-power reconfigurable computing. Nevertheless, effective work of
such heterogeneous platforms is rather challenging, especially when it
comes to scheduling of tasks, owing to the existence of the energy-
performance specifications and architectural differences between these
accelerators. The proposed work is a new architecture of energy-aware
task scheduling aimed at dynamically distributing work on GPU, TPU,
and FPGA with multi-unit to exploit real-time profiling, workload
classification, and cost-optimal scheduling policy. The scheduler uses
light-weight machine learning models to predict the execution unit of
the most fitting task on the basis of the computational complexity,
memory requirement, and latency requirements. Broad assessment is
carried out on a sample embedded system that includes an NVIDIA
Jetson Xavier GPU, a Google Coral Edge TPU and an Intel Arria 10 FPGA.
The system performance is measured using real-world tasks, i.e. image
classification, signal transformation, and deep learning inference.
According to the results, the proposed scheduler yields up to 35 percent
energy savings and 28 percent gains in execution latency as compared
with baseline scheme such as static round-robin and performance only
scheduling. Moreover, the framework proves to be resilient at changing
intensive workloads with the scheduling overhead of less than 2.5% and
this nature of the framework qualifies it to be compatible with real-time
tasks. Its contribution to the field is a scalable and intelligent way of
scheduling that optimizes energy consumption within an acceptable
impact on performance, so this paper is of particular interest to
embedded Al computing of the future as well as IoT edge systems and
low power-intensive cyber-physical systems. Future work Future
expentions will find application in reinforcement learning based
adaptive control and more integration with other processing aspects
like NPUs and DSPs to increase the scope of the framework.

1. INTRODUCTION

drivers of this transformation as far as both the

The trend upon the development of embedded computational throughput and the energy
systems of the past has witnessed a paradigm shift efficiency is concerned. A potentially viable
toward single-core, power-limited systems architectural solution is heterogeneous embedded

towards highly parallel

performance-oriented platforms which use a combination of Graphics

systems which have heterogeneous processing
components. The ever-growing requirements of
the artificial intelligence (Al) and computer vision
systems, real-time data analytics, edge processing
and other similar applications are the major

Processing Units (GPUs), Tensor Processing Unit
(TPUs), and Field-programmable Gate Arrays
(FPGAs). To address these platforms, these
platforms provide the flexibility to scale diverse
workload to strict energy budget, particularly in

Electronics, Communications, and Computing Summit | Apr - Jun 2025 16

Ashu Nayak et al / Energy-Aware Task Scheduling in Heterogeneous GPU/TPU-FPGA Embedded
Platforms

resource limited systems like autonomous
vehicles, wearable, smart surveillance systems,
and industrial Internet of Things (IoT)
deployments.

All the accelerators types have unique weaknesses
and strengths: in comparison, GPUs are best suited
to large-scale data-parallel work, TPUs are
optimized to deep learning inference tasks of high
throughput and low-power, and FPGAs provide
programmable logic that can be optimized to
highly specific workloads with minimal energy
consumption. Nevertheless, they create a
complexity in scheduling runtime tasks as well due
to their heterogeneity. Simple round-robin
schemes or static scheduling techniques do not
reflect the sophisticate balances of energy,
performance, and thermal behavior that exist on
these platforms. In addition, running a specific task
on the wrong device may cause overconsuming of
energy, latency bottlenecks, as well as thermal
throttling, which reduces the potential relation of
heterogeneity.

In order to overcome these difficulties, the current
paper proposes a new energy-efficient task
scheduling framework, which is able to perform
work loads mapping on the most appropriate
processing unit in real-time. The scheduler
postulated uses workload profiling, energy
modeling and run time system feedback to make
intelligent scheduling decisions. In contrast to
normal schedulers which simply optimize
performance, our method is backed by energy-
performance trade-offs as well as real-time
constraints. It supports the lightweight machine
learning-based classification to optimize the
mapping of workload to devices based on the
characteristics of computing, and the energy
efficiency profile.

The motivation behind the work comes in the need
to accomplish great performance in computations
and also to minimize power consumption,
primarily important in cases where there is limited
battery life, heat limits or environmental
sustainability. The proposed scheduler will allow
smarter use of resources, which is not only
extending device lifetime but also allowing
scalable deployment of edge-Al workloads in
heterogeneous embedded systems.

Key Contributions

e We build a profile-directed energy model of
GPU, TPU and FPGA platforms, reflecting a
realistic performance and power behaviour
under workloads.

e We introduce a dynamic task scheduler which
undertakes a heuristic cost-optimized task
mapping on the basis of its compute intensity,
memory requirements and timing deadline.

e We analyze the framework using a hybrid
embedded testbed with up to 35 and 28
percent in saving energy and latency
improvement respectively as compared to the
baseline schedulers.

2. RELATED WORK

The emergence in recent years of embedded
computers and the edging-out of general-purpose
computers have highlighted the startling trend of
energy-aware scheduling analysis of
heterogeneous platforms. Energy and performance
trade-offs have been discussed in a few works of
literature especially where several processing
units with varying capabilities are used into a
system together.

A. Energy-Efficient Scheduling in Embedded
Systems

The problem of energy-aware scheduling has
gained huge popularity in mobile and embedded
systems. In [1] a dynamic voltage and frequency
scaling (DVFS) DVFS based energy minimization
technique for real time applications was proposed
by the authors. Nonetheless, these are usually
restricted to homogeneous CPUs and fail to
address the complexities of heterogeneous
accelerator designs. In [2], strategies of task
partitioning were implemented in order to achieve
the balance of performance and power but could
not perform dynamically to dynamic workloads.

B. Task Mapping for Heterogeneous Computing
The heterogeneous systems have dealt with the
issue of task mapping with both static and dynamic
solutions. In [3] it was demonstrated that static
scheduling algorithms can give high throughput, at
the expense of flexibility and energy cost. This is a
dynamic scheme and [4] leverages present-day
heuristics or reinforcement learning to assign
tasks to CPUs, GPUs, or FPGAs. Although effective
at times, the given works tend to omit real-time
constraints and thermal behavior of the embedded
environments. Besides, TPUs are rarely
considered, and they become more frequent in
edge Al platforms.

C. Machine
Classification
Machine learning has turned out to be an effective
method of forecasting the workload characteristics
and informing the scheduling choices. In [5], a
decision-tree workload classifier was incorporated
in a task scheduler to heterogeneous multicore
platforms. On the same note, [6] showed how
neural networks were used to forecast the optimal
resource assignment of deep learning workloads.
These techniques are potentially useful, but in

Learning-Based Workload

17 Electronics, Communications, and Computing Summit | Apr - Jun 2025

Ashu Nayak et al / Energy-Aware Task Scheduling in Heterogeneous GPU/TPU-FPGA Embedded
Platforms

most cases lack interoperability with fine-grained
energy modeling or FPGA support.

D. FPGA
Reconfiguration
FPGAs have also been used to offload energy
sensitive systems that are compute-intensive. In
[7], authors introduced partial reconfiguration
method, which allows reconfiguration at run time
of the FPGA resources to changing workloads. The
articles, like [8], concentrate on the acceleration of
certain tasks by using CPU FPGA hybrid systems.
The combination of FPGA reconfiguration and
unified scheduling framework on GPU, TPU and
FPGA, however, constitutes an open issue. Also,
real-time systems need to pay attention to the
reconfiguration latency and FPGA bitstream
compilation time.

Offloading and Runtime

Summary and Research Gap

Similarly, solutions to every one of these areas
have been proposed, but a coordinated plan that
encompasses the parts of energy-sensitive
scheduling, run-time task classification, and
heterogeneous accelerator management (gpu, tpu,
and fpgas) has not yet been provided with one
framework to serve as its core. The current
solutions overlook the energy limitation either
because it is not adaptive to run-time changes, or
that it does not support the wide variety of
hardware backends. The gaps are filled in this
paper, which describes a dynamic and energy-
aware task scheduler that can perform real-time
decision-making across heterogeneous
accelerators and which is practically evaluated on
areal, embedded testbed.

3. System Architecture and Platform
Description

3.1 Heterogeneous Embedded Platform

of accelerators CPU with three different kinds of
accelerators: GPU, TPU, and FPGA, which present
unique computing and energy features to provide
maximum flexibility on different types of

workloads. The NVIDIA Jetson Xavier NX is the
GPU chip, which has a 384-core Volta GPU with TC
of 48 and 6-core ARMCPU, so it is best used high-
throughput parallel applications that are
associated with computer vision, inference of deep
learning, and operations with matrices. In a
scenario specific to Al inference where high
performance / low power is needed, the system
combines the Google Coral Edge TPU, a custom-
designed application-specific integrated circuit
(ASIC) designed to accelerate the popular
TensorFlow Lite framework, which supports most
deep learning model formats, and aims to optimize
compute operations running on quantized models
with up to 4 trillion operations per second (TOPS)
available using less than 2 watts of power. This
means the TPU is optimal in low latency and low
power edge Al applications like object detection
and classification. The reconfigurable part is the
Intel Arria 10 GX FPGA Development Kit with
performance-enhanced logic cells, an embedded
memory subsystem, and DSP slices, which allow
designing custom data paths and streaming-
oriented pipelined execution. The FPGA supports
OpenCL and even partial reconfiguration, so
hardware-level specialization of tasks and energy-
efficient deterministic operation are viable.
Combined, these accelerators provide a strong
testbed, which is representative of real-life
heterogeneous embedded systems, and that allows
an in-depth assessment of the proposed scheduler
under a continuum of compute-intensive, latency-
sensitive, and power-limited conditions. This
arrangement does not only demonstrate the
interrelationship between different processing
architectures but also points at the difficulty of

The given energy-aware task scheduling scheduling energy-aware in embedded systems
framework is applied on a heterogeneous with dynamically changing workloads and
embedded environment that includes three types resource obligations.
Table 1. Comparative Features of Heterogeneous Accelerators
Feature GPU (Jetson Xavier NX) | TPU (Coral Edge TPU) FPGA (Intel Arria 10 GX)
Architecture 384-core Volta GPU + 6- | ASIC for quantized DNN | Customizable logic w/ DSP
core CPU inference blocks
Peak Performance | Up to 21 TOPS 4 TOPS ~150 GFLOPS (varies by
design)
Power ~10-15W <2W 4-10 w (config-
Consumption dependent)
Target Workloads | Parallel computing, | Edge Al inference Streaming, signal
DNNs processing
Programming API CUDA, cuDNN TensorFlow Lite (Edge | OpenCL, Quartus, HDL
TPU)
Reconfigurability Fixed Fixed Partial /Full reconfigurable

Electronics, Communications, and Computing Summit | Apr - Jun 2025 18

Ashu Nayak et al / Energy-Aware Task Scheduling in Heterogeneous GPU/TPU-FPGA Embedded
Platforms

3.2 Scheduler Runtime Layer

The most important component of the suggested
framework is the scheduler runtime level whose
role is to coordinate smart tasking between the
heterogeneous processing units, i.e.,, GPU, TPU, and
FPGA using the feedback of the real-time system
and the workload profile. The layer consists of
three closely coupled modules that include an
energy profiler and a workload classifier, a
hardware abstraction interface; and a feedback-
pumped reassignment mechanism. The energy
profiler constantly tracks the power used by tasks
on each accelerator, and their execution latency,
and provides that information as a dynamically
updated energy-performance profile to the task
classification engine. The lightweight machine
learning models used by workload classifier to
obtain the prediction of computations and memory
demands of the incoming task include decision tree
or support vector machine. These predictions help
the scheduler in choosing the most appropriate
accelerator in terms of performance efficiency and

cost of energy applied. The system uses hardware
abstraction layer (HAL) which provides a common
API to deploy tasks, no matter whether there is
hardware support by CUDA, TPU, or OpenCL. Such
abstraction makes scheduler design simpler and
also allows platform to be portable and extensible.
In addition, a real-time feedback loop is provided
that observes system conditions, e.g. queue length,
thermal state, and device availability and causes
the dynamic re-assignment of tasks when some
pre-defined threshold is met, or when improved
energy-performance trade-offs are made possible.
This is because the closed-loop control allows the
system to adaptively react to the changing
workloads and the changes in the run-time
condition so that the energy-efficient execution of
tasks is achieved without the breach of the
application-level application latancy and
throughput requirements. As a whole, the
scheduler run-time system is a smart middle-ware
that converts base system event heterogeneity into
optimized and synchronized system behavior.

Scheduler Runtime Layer

[Incoming Task J

Y

Classifier

[Energy Profiler] [

Y

Workload]

Hardware Abstraction
Layer (HAL)

-«

Y

Feedback Monitor
(Latency, Queue, Thermal)

[eru J[TtPU][FPGA |

Figure 1. Scheduler Runtime Layer Overview

4. METHODOLOGY

4.1 Workload Profiling and Energy Modeling
The initial stage in the proposed framework is
elaborate workload profiling and energy modeling
over the heterogeneous processing units so as to
enable the intelligent and energy efficient task

scheduling. All the computational tasks, including
matrix multiplications and convolutional neural
network (CNN) inference, as well as fast Fourier
transforms (FFT), apply each type in a controlled
condition manner in the GPU (NVIDIA Jetson
Xavier NX), TPU (Google Coral Edge TPU), and

19 Electronics, Communications, and Computing Summit | Apr - Jun 2025

Ashu Nayak et al / Energy-Aware Task Scheduling in Heterogeneous GPU/TPU-FPGA Embedded
Platforms

FPGA (Intel Arria 10 GX). Things such as execution
time, energy consumption per operation, peak
memory usage and thermal impact are a few of the
key performance and energy measures that are
gathered during these profiling runs. The on-chip
statistics and power meters and software probing
tools (e.g. tegrastats for GPU, Coral TPU profiler,
and FPGA power monitors) are used to collect the
data.

The profiling is done with diverse values of input
sizes and with diverse execution conditions so as
to gather the scaling characteristics of diverse
devices with different workloads. A prediction
model based on supervised machine learning
algorithms is made based on this raw information.
This model uses as its training data a vocabulary of
lightweight features identified per each task and
they are:

Operation type: Categorizes the pattern of the
computation (e.g. matrix multiply, CNN
inference, FFT) because the different
operations will have different profiles of
performance against energy by hardware
unit.

Memory usage: Displays the total and
maximum amount of memory that is needed
by the task, which is important to the
suitability to the devices with finite or shared
memory resources.

Input data volume: It impacts the transfer
overhead of data and also affects the strategy
of either using a batch or streaming approach.
Task periodicity: The periodicity with which a
task is run which optimizes the task for
latency-sensitive workloads as well as
recurring workloads.

Based on such features, the energy model
speculates the expected energy and latency of
executing a given task on any of the available
processing unit. This allows the scheduler to be
proactive and contextually aware in terms of
balancing energy efficiency and the need to
perform in real time. The profiling and modeling
part can be considered to be the basis of the
energy-aware task grouping and right device
selection at the run time.

Task Execution on
GPU /TPU/ FPGA

!

Collect Metrics:
Latency, Energy,
Memory, Thermal

!

Feature Extraction
» Operation Type
» Memory Usage

« Input Size

« Task Periodicity

T

Latency Prediction

Model

ML-Based Energy &

|

Input to Scheduler

Figure 2. Workload Profiling and Energy Modeling Flow.

4.2 Task Classification Engine

Task classification engine is very important in the
sense that task scheduler should be able to make
intelligent and energy-aware decisions in real-

Electronics, Communications, and Computing Summit | Apr -

time. The classification engine will essentially be a
scheduler that must sort incoming tasks as being in
one of three levels of urgency and criticality: hard
real-time, soft real-time, and best-effort. These

Jun 2025 20

Ashu Nayak et al / Energy-Aware Task Scheduling in Heterogeneous GPU/TPU-FPGA Embedded
Platforms

levels are arrived at depending on the time
limitation of each task. Hard real-time tasks are
those where delayed system responses are
intolerable to a large degree: task failure may
occur because of slackness in the system-any
degree of slackness can cause a task to fail-such as
real-time object detection in automated car or
anomaly detection in industrial automation. Soft
real time is subject sensitive to latency, but is able
to absorb a small amount of delay, as in video
frame enhancement or interactive voice. Finally,
when it comes to best effort work, timing
constraints are not critical, and such work can be
scheduled with reduced priority, e.g, time
recording, data caching, or back-of-the-neck model
learning. Such a classification of tasks guarantees
the preference of tasks with higher urgency to use
low-latency accelerators and leaves best-effort
tasks to idle or energy-efficient units.

It needs machine learning models to automate this
process and accommodate dynamic flexibility: the
classification engine includes lightweight
classifiers, either decision tree or support vector
machines (SVM), which can take the role of
machine learning models. Such models are pre-

trained offline on historical profiling data
containing such features as the operation type, the
size of the input data and the estimated execution
latency, memory footprint and periodicity. In the
process of operation, each time a new task is
encountered, its characteristics are evaluated and
fed to the classifier which determines the
suitability of use with the most suitable category of
the resource and determines the suitability of the
resource. Suppose a task might be categorized as a
CNN inference that is highly frequent and input
size is medium; the task could be targeted to the
TPU, classified as soft real time, where a large
matrix inversion task whose deadline is not strictly
restricted could be classified as best-effort and
scheduled to run on the FPGA when the device is
idle. The classification does not only help in
prioritizing critical tasks but also assist in energy-
saving optimization since the types of workloads
may be assigned to the most appropriate
accelerators. It is also possible to infer quickly and
have little computational overhead due to the use
of interpretable models, like decision trees, and the
classification engine can therefore be useful on
embedded devices running in real-time.

[Incoming Task

A

[Feature Extraction]

ML Classifier
Decision Tree/,

Hard RT
(GPU/TPU)

Soft RT
(TPU)

Best-Effort
(FPGA/Idle)

Figure 4. Task Classification Flow

4.3 Scheduler Design

The scheduler that forms the core of the proposed
framework will intelligently assign computational
tasks to the heterogeneous resources of GPU, TPU
and FPGA balancing energy efficiency and
performance on a real time basis. It uses a hybrid
schedule strategy that maintains both the static
and dynamic parts in achieving this. During the
static mapping step, well-known task
characteristics, e.g. tasks frequently or
systematically used, e.g. in a repetitive pipeline,

21

tasks, are mapped onto the hardware accelerator
boasting the most energy-efficient
implementation. This makes the recurring
workloads like fixed CNN layers or filtering in FFT
form have low shot scheduling latency. Static
mapping in particular is useful in tasks which are
periodic or deterministic, where size and timing
remain similar enough that the scheduler does not
incur the overhead of making decisions during
runtime, but can still make advantage of device
selection optimisation.

Electronics, Communications, and Computing Summit | Apr - Jun 2025

Ashu Nayak et al / Energy-Aware Task Scheduling in Heterogeneous GPU/TPU-FPGA Embedded
Platforms

In conjunction with the fixed mapping
representation, the dynamic re-mapping element
is turned on whenever some runtime variation in
workload demands, system heat level, or power
quotas occurs. As an example, when a desired
accelerator is already saturated or undergoes high
temperatures, then the scheduler can enable the
dynamic migration of tasks to other compute
devices with tolerable energy-performance ratios.
This is through some mechanism of optimization
of cost function in which both candidates being
evaluated devices are processed on a weighted
formula:
Cost — a. Energy + B. Latency

The weights 0 In the case of battery-powered
systems, a can be increased to focus more on
energy savings whereas latency-aware
applications can configure 1 - (beta) with a larger
weight. The scheduler keeps re-computing this
cost function, on an on-going basis, on every
possible task-device combination and chooses that
mapping which minimizes the overall cost. Not
only does such modular, hybrid strategy enhance
the responsiveness of the system during dynamic
conditions, but it also guarantees that it consumes
as little energy as possible and does not lose real-
time behavior, which is why it is suitable for the
edge-Al and mission-critical embedded systems.

Incoming Task

Is

profiled?

it Yes

Static
Mapping

A

y

Dynamic Mappi |«
fing
A
»| Select Optimal
Device
/Send to GPU/TPU/FPGA/

Figure 5. Scheduler Design Flowchart: Hybrid task mapping process combining static profiling and
dynamic cost-based reassignment for optimal accelerator selection.

4.4 System Implementation

The envisaged energy-aware scheduler will be
implemented as a middleware-based application
that runs on the host CPU of the embedded system
and is the conductor of the computation tasks
assignment to the accelerators available. With this
modular middleware creation, portability is
guaranteed, and it is designed in such a way that
no adjustments are needed to the application logic
in order to provide seamless integration with a

Electronics, Communications, and Computing Summit | Apr -

wide range of edge computing stacks. A Scheduler
can directly access hardware accelerators via
platform-specific APIs and drivers, providing a
user-level interface to control hardware
accelerators, but retaining control of very low-
level scheduling and data transfer timing.

In case of executing tasks using GPU, the system
applies its NVIDIA cuDNN and CUDA libraries,
which can accelerate general-purpose parallel and
deep learning computations. CUDA delivers

Jun 2025 22

Ashu Nayak et al / Energy-Aware Task Scheduling in Heterogeneous GPU/TPU-FPGA Embedded
Platforms

thread-level parallelism and memory management
primitives and cuDNN delivers highly optimized
routines common in workloads in the field of Al
such as convolutional layers, pooling and
activation functions. In the case of tasks that are
matched to the TPU, the system is utilizing a
lightweight inference framework, TensorFlow Lite
for Edge TPU, which is designed to specifically
support low-latency deep learning model
(quantized models) inference on devices. TPU API
delivers the abstraction of device interaction in
addition to delivering the compilation tools that
transform TensorFlow models into the format in
which they can be executed on the Edge TPU. This
route would be very valuable in vision based
inferring systems where the energy or latency is
important. The task execution using FPGA, the
system employs pre-compiled OpenCL Kkernels
which are bit streams precompiled offline to
minimize the run time overhead. Such precompiled

kernels are launched through the OpenCL host API
calls which allows direct data access to the FPGA
and running throughout optimized hardware
pipelines.

Its control loop includes the task serialization, the
feature extraction, the task classification, the
scheduling decision-making and disk task
dispatching of the middleware. It also keeps
runtime logs and gathers performance telemetry
(e.g. energy, device usage, latency) which is used to
generate the feedback loop in dynamic
reassignment as system constraints vary. This
methodology of clearly separating the control logic
and device- specific implementations allows this
flexibility, scalability and real-time responsiveness,
allowing the system to be deployable on the edge
in embedded Al systems, I[oT gateways and
heterogeneous smart-edge nodes with variable
acceleration capabilities.

Application

A

y

Middleware Sc

Feature Extraction
ML-Based Classification
Scheduling Decision Logicic
Telemetry Logger

heduler (CPU)

A4 Y \4
CUDA/ TensorFlow| | OpenCL
cuDNN Lite Kernels

\4 \ 4 Y

GPU TPU FPGA

Telemetry Feedback
(Energy, Latency, Utilization)

Figure 6. System Implementation Architecture: Middleware scheduler managing task flow to GPU, TPU,
and FPGA through platform-specific APIs with telemetry feedback integration.

5. Experimental Setup

5.1 Benchmark Tasks and Experimental Setup
In order to analyze the efficacy and flexibility of
the suggested energy-aware scheduling model, a
vast range of benchmark tasks was chosen to
reproduce the actual edge computing workloads
with their variety levels in terms of the
computation complexity, memory consumption,
and sensitivity. The benchmark suite has four
major categories as follows: (1) Object detection

23

with YOLOVS5, a deep convolutional neural network
and has a significant accuracy and speed when
applied in real-time vision applications, a
representation of Al inference loads. The pre-
trained weights were mounted by the YOLOvS5 that
processed the input frames of 416 x 416 with
variable rates to emulate varied streaming
environments. (2) Fast Fourier Transform (FFT)
and Inverse Fourier Transform (IFFT) tasks that
are typical signals processing workload were

Electronics, Communications, and Computing Summit | Apr - Jun 2025

Ashu Nayak et al / Energy-Aware Task Scheduling in Heterogeneous GPU/TPU-FPGA Embedded
Platforms

measured on different input lengths to measure
pipeline behavior and compute bound task
behavior at least the FPGA. Among others, matrix
multiplications and convolution layers were
chosen to offer computing kernels present in
scientific computer applications and DNN backops;
the kernels were tested in scattered as well as
conducted spread across graphical bots. Gradient-
based real-time image denoising task based on

convolutional neural networks (CNNs) was taken
as an example of a low-latency, edge Al workload
that is quality- and time-sensitive. To evaluate the
ability of the scheduling framework to handle
realistic multi-tasking these tasks were run in
isolation and under mixed-load conditions across
the GPU (Jetson Xavier NX), TPU (Coral Edge TPU),
and FPGA (Arria 10 GX).

Table 2. Benchmark Tasks Categorized by Type, Purpose, Latency Sensitivity, and Preferred Accelerators

Task Category Purpose Latency Primary
Sensitivity Accelerator(s)

YOLOv5 Object | Al Inference Real-time vision, object | High TPU / GPU
Detection tracking
FFT/IFFT Signal Transform-based DSP | Medium FPGA

Processing (audio/image)
Matrix Linear Core DNN compute, | Moderate GPU
Multiplication & | Algebra/DNN scientific workloads
Conv
CNN-Based Image | Al Inference Real-time visual | High TPU / GPU
Denoising enhancement
5.2 Metrics Measured and Evaluation tasks dispatching activities. This measurement was
Methodology crucial in order to guarantee that the scheduling

A thorough performance and efficiency measure
was taken to determine how scheduler affects the
system-level as well as the task-level behavior.
Execution time (in milliseconds) was the main
indicator, which defines the total latency between
the task issue date and the completion date. This
was essential in determining the suitability of the
scheduler towards applications that had to do with
real-time considerations. On-board power sensors
in conjunction with vendor- specific telemetry and
separate power meters were used to measure
energy consumption (in Joules) and give an insight
into the energy efficiency of each task-accelerator
pairing. Also, the scheduler overhead was
measured as a percent of the total execution time
consumed in classification, decision-making, and

logic itself would not result in a large amount of
delay especially in latency-critical situations.
Lastly, system-level measurements (throughput
(tasks per second)) and throughput of non-
malicious work (tasks per second)) were
performed to extract how effective was the
scheduler in keeping up performance as the
workloads changed. These were calculated during
the nominal and peak load scenarios to evaluate
the robustness and the scalabilities of the
scheduler. The set of varying tasks combined with
the multi-dimensional set of metrics allowed
conducting a thorough evaluation of the
capabilities of the scheduler at optimizing
simultaneously on energy and performance on
heterogeneous embedded platforms.

Table 3. Evaluation Metrics Used for Assessing Scheduler Performance and Efficiency

Metric Unit Purpose Measurement Method
Execution Time | Milliseconds Measures latency from task | Timer-based profiling
(ms) dispatch to completion
Energy Joules (]) Evaluates power efficiency | On-board Sensors +
Consumption per task external power meters
Scheduler Percentage Assesses added latency from | Profiling execution time
Overhead (%) scheduling decisions breakdown
Throughput Tasks per | Measures sustained system | Total tasks completed over
second output time
Deadline Miss | Percentage Evaluates real-time task | Missed deadlines / total
Ratio (%) compliance tasks

6. RESULTS AND DISCUSSION
The given energy-aware task scheduler was
compared to the common approaches of static

Electronics, Communications, and Computing Summit | Apr -

matching and round-robin scheduling approaches
with a range of heterogeneous workload by testing
deep learning inference, sign transformation, and

Jun 2025 24

Ashu Nayak et al / Energy-Aware Task Scheduling in Heterogeneous GPU/TPU-FPGA Embedded
Platforms

numerical operations. The high energy efficiency
along with lesser execution latency of the
proposed scheduler is quite evident by its
experimental outcome. The average energy
consumption of the scheduler was 4.9] per task
along with an average latency of 88 ms, against the
round-robin (7.8] / 123 ms) and performance-
only (6.3] / 101 ms) baseline only achieves
19.24%, respectively. The advances have been
accredited to the density of the scheduler because
of its capability to automatically allocate the
responsibility to the most energy-efficient physical
device in view of the real-time and the system load
constraints. Moreover, the deadline miss rate was
reduced to 5.1% as compared to 14.2 and 10.5 in
round-robin and performance approach
respectively, supporting its analysis of time-
sensitive embedded workloads. These proactive
profiling, smart classification, adaptive scheduling
allowed the system to gain significant increase in
responsiveness and power.

More target examination of the constituent-specific
activity showed refined understanding of the
functions of individual accelerator in
heterogeneous execution of tasks. The GPU (Jetson

120

100

80

60

Metric Values

401

20F

Proposed Scheduler

Round-Robin

Xavier NX) was extremely efficient in large-scale,
parallel tasks, like matrix multiplications and bulk
convolution, and it had much higher performance,
at a higher energy cost, especially when used to
perform neural network inference. The TPU
(Google Coral Edge TPU) was the most energy-
efficient CNN-based inference accelerator through
decreases in the batch sizes and quantized
versions. It consistently performed fast execution
without much energy overhead and was best
suited in real-time applications, such as Al It was
FPGA (Intel Arria 10 GX) that was especially useful
to deterministic workloads such as FFT/IFFT and
pipelined data transforms where the energy-per-
task ratio produced by FPGA was the lowest
among three when suitably configured using pre-
compiled OpenCL kernels. Though it has to be
noted that dynamic profiling and real-time
decision-making are complex tasks and that the
proposed scheduler has test execution overhead of
less than 2.5 percent, it can be confirmed that this
scheduler can be used in an environment with
limited resources and responsiveness is of high
importance (such as embedded environment).

Energy ()
I Latency (ms)
B Deadline Miss Rate (%)

Performance-Only

Scheduling Strategy

Figure 7. Comparison of Scheduling Strategies

The scalability of the booking system was also
tested when the system was subject to a
changeable load monitored in dynamic edge
operation where the system load would increase to
2 times the nominal task volume. In these heavily
overloaded conditions the system achieved
latencies of less than 100 milliseconds and its
energy consumption was at worst compressed to
only 15 percent of optimal, demonstrating that the

scheduler flexibly balances throughput and power
constraints. Nonetheless, there are certain issues.
FPGA (re)configuration latency Real-time FPGA
reconfiguration can have long delays on workloads
that need to switch to different kernels frequently,
making the scheduler less flexible in highly
dynamic environments. Besides, TPU only
supports quantized models, which may accentuate
preprocessing requirements and even model

25 Electronics, Communications, and Computing Summit | Apr - Jun 2025

Ashu Nayak et al / Energy-Aware Task Scheduling in Heterogeneous GPU/TPU-FPGA Embedded
Platforms

diversity. Such drawbacks indicate the necessity of
more flexible scheduling tools. As work the
adaptive scheduler using reinforcement learning
that learns the task-device mapping to be optimal
over time and learn policies depending on the
workload history and system telemetry. It will also
allow a wider use of the framework to other

accelerators like NPUs or DSPs, with the ability to
extend even further to all the embedded platforms
in ultra-low-power or multi-core edge Al
conditions. The improvements are willing to
provide a scalable, intelligent, and hardware-
conscious scheduling algorithm to next-generation
energy-limited embedded systems.

Table 4.Performance Comparison of Task Scheduling Strategies for Heterogeneous Embedded Systems

Scheduler Energy Average Deadline Execution
Consumption (]) Latency Miss Rate | Overhead (%)
(ms) (%)
Proposed Scheduler | 4.9 88 5.1 <2.5%
Round-Robin 7.8 123 14.2 -
Performance-Only 6.3 101 10.5 -
8. CONCLUSION REFERENCES

The paper presented a new energy-efficient task
scheduler domain that was designed as a
heterogeneous embedded platform (with GPU,
TPU and FPGA support). Based on the
understanding that each accelerator has different
energy-performance profiles, the proposed system
will use detailed profiling of workloads,
classification of tasks using machine learning, as
well as a hybrid schedule, which integrates static
mapping and re-allocation. The scheduler is smart
enough to assign real-time tasks to appropriate
processing unit, by maximizing a cost function that
is dependent on balancing energy consumption
and short execution latency. To conduct
experimental evaluation using a wide range of Al
and signal processing workloads, significant gains
were exhibited with up to 35 percent lower energy
usage and 28 percent lower latency achieved over
traditional round-robin and performance-only
designs. The framework has an advantage of high
throughput and real-time responsiveness against
variable load conditions and generates minimal
overhead to prove its compatibility with edge-Al
and embedded systems. Additionally, the
architecture modularity and deployment of
standardized APIs like CUDA, TensorFlow Lite, and
OpenCL guarantee the wide hardware
compatibility and scale. Nevertheless, even though
it works, there is still the issue of handling FPGA
reconfiguration latency and poor flexibility of TPUs
when working with non-quantized models.
Futurew many further explorations will be made
such as incorporation of reinforcement learning-
based autonomous scheduling agents so that the
system may continuously adapt to changing
workload and system dynamics. The use of
support of NPUs, DSPs, and other such emerging
accelerators will also improve the adaptation of
the framework to next-generation, low-power,
intelligent embedded situations.

[1] Awan, M. A, & Manzak, S. (2020). Dynamic
power management using machine learning
for embedded systems. IEEE Transactions on
Computer-Aided Design of Integrated Circuits
and Systems, 39(6), 1190-1201.
https://doi.org/10.1109/TCAD.2019.290117
8

[2] Xu, C, Li, Z, Qiu, M,, & Zomaya, A. Y. (2020).

Energy-efficient task scheduling for
heterogeneous embedded systems. I[EEE
Transactions on Industrial Informatics, 16(5),
3186-3195.

https://doi.org/10.1109/TI1.2019.2948784

[3] Kwon, S., & Choi, K. (2022). Task mapping and
scheduling for heterogeneous computing
systems using deep reinforcement learning.
IEEE Transactions on Parallel and Distributed
Systems, 33(2), 407-420.
https://doi.org/10.1109/TPDS.2021.307711
4

[4] Hung, A. C, & Chou, C. H. (2021). Dynamic
workload-aware scheduling for
heterogeneous processors in edge computing.
IEEE Access, 9, 45218-45230.
https://doi.org/10.1109/ACCESS.2021.30670
28

[5] Huang, H. He, H, Tang, F,, & Liu, D. (2021).
Machine learning-based workload
classification for resource management in
heterogeneous systems. IEEE Transactions on
Cloud Computing. Advance online publication.
https://doi.org/10.1109/TCC.2021.3072937

[6] Li, Z, Ding, Z, He, Y, & Wang,]. (2021).
Adaptive deep learning task offloading for
energy-efficient edge computing. [EEE
Internet of Things Journal, 8(3), 2030-2042.
https://doi.org/10.1109/J10T.2020.3018192

[7] Canis, A, Choi,], Aldham, M. Zhang, V.,
Kammoona, A., Anderson, J. H,, ... & Brown, S.
(2011). LegUp: High-level synthesis for FPGA-

Electronics, Communications, and Computing Summit | Apr - Jun 2025 26

Ashu Nayak et al / Energy-Aware Task Scheduling in Heterogeneous GPU/TPU-FPGA Embedded

Platforms

27

(8]

based processor/accelerator systems. In
Proceedings of the ACM/SIGDA International
Symposium on Field-Programmable Gate
Arrays (pp- 33-36).
https://doi.org/10.1145/1950413.1950423

Tessier, R., & Burleson, W. (2001).
Reconfigurable computing for digital signal
processing: A survey. Journal of VLSI Signal
Processing Systems for Signal, Image, and
Video Technology, 28(1), 7-27.
https://doi.org/10.1023/A:1008150918202

[9] Chen, X, Li, Y., & Zhang, T. (2020). A hybrid

scheduling strategy for heterogeneous
embedded systems with FPGAs and GPUs.
Microprocessors and Microsystems, 76,
103082.
https://doi.org/10.1016/j.micpro.2020.1030
82

[10] Rausch, T., & Dustdar, S. (2019). Edge

intelligence: The convergence of humans,
things, and Al. Computer, 52(12), 42-53.
https://doi.org/10.1109/MC.2019.2942804

Electronics, Communications, and Computing Summit | Apr - Jun 2025

