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 Dynamic performance needed in the edge and embedded systems has 
boosted demand of real time energy-efficient computing that requires 
integration of heterogeneous hardware accelerators, such as Graphics 
Processing Units (GPUs), Tensor Processing Units (TPUs), and Field-
Programmable Gate Arrays (FPGAs). Such varied processing units each 
bring both complementary abilities to the table, with GPUs offering vast 
parallelism, TPUs specializing in neural-inference, and FPGAs offering 
low-power reconfigurable computing. Nevertheless, effective work of 
such heterogeneous platforms is rather challenging, especially when it 
comes to scheduling of tasks, owing to the existence of the energy-
performance specifications and architectural differences between these 
accelerators. The proposed work is a new architecture of energy-aware 
task scheduling aimed at dynamically distributing work on GPU, TPU, 
and FPGA with multi-unit to exploit real-time profiling, workload 
classification, and cost-optimal scheduling policy. The scheduler uses 
light-weight machine learning models to predict the execution unit of 
the most fitting task on the basis of the computational complexity, 
memory requirement, and latency requirements. Broad assessment is 
carried out on a sample embedded system that includes an NVIDIA 
Jetson Xavier GPU, a Google Coral Edge TPU and an Intel Arria 10 FPGA. 
The system performance is measured using real-world tasks, i.e. image 
classification, signal transformation, and deep learning inference. 
According to the results, the proposed scheduler yields up to 35 percent 
energy savings and 28 percent gains in execution latency as compared 
with baseline scheme such as static round-robin and performance only 
scheduling. Moreover, the framework proves to be resilient at changing 
intensive workloads with the scheduling overhead of less than 2.5% and 
this nature of the framework qualifies it to be compatible with real-time 
tasks. Its contribution to the field is a scalable and intelligent way of 
scheduling that optimizes energy consumption within an acceptable 
impact on performance, so this paper is of particular interest to 
embedded AI computing of the future as well as IoT edge systems and 
low power-intensive cyber-physical systems. Future work Future 
expentions will find application in reinforcement learning based 
adaptive control and more integration with other processing aspects 
like NPUs and DSPs to increase the scope of the framework. 
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1. INTRODUCTION 
The trend upon the development of embedded 
systems of the past has witnessed a paradigm shift 
toward single-core, power-limited systems 
towards highly parallel performance-oriented 
systems which have heterogeneous processing 
components. The ever-growing requirements of 
the artificial intelligence (AI) and computer vision 
systems, real-time data analytics, edge processing 
and other similar applications are the major 

drivers of this transformation as far as both the 
computational throughput and the energy 
efficiency is concerned. A potentially viable 
architectural solution is heterogeneous embedded 
platforms which use a combination of Graphics 
Processing Units (GPUs), Tensor Processing Unit 
(TPUs), and Field-programmable Gate Arrays 
(FPGAs). To address these platforms, these 
platforms provide the flexibility to scale diverse 
workload to strict energy budget, particularly in 
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resource limited systems like autonomous 
vehicles, wearable, smart surveillance systems, 
and industrial Internet of Things (IoT) 
deployments. 
All the accelerators types have unique weaknesses 
and strengths: in comparison, GPUs are best suited 
to large-scale data-parallel work, TPUs are 
optimized to deep learning inference tasks of high 
throughput and low-power, and FPGAs provide 
programmable logic that can be optimized to 
highly specific workloads with minimal energy 
consumption. Nevertheless, they create a 
complexity in scheduling runtime tasks as well due 
to their heterogeneity. Simple round-robin 
schemes or static scheduling techniques do not 
reflect the sophisticate balances of energy, 
performance, and thermal behavior that exist on 
these platforms. In addition, running a specific task 
on the wrong device may cause overconsuming of 
energy, latency bottlenecks, as well as thermal 
throttling, which reduces the potential relation of 
heterogeneity. 
In order to overcome these difficulties, the current 
paper proposes a new energy-efficient task 
scheduling framework, which is able to perform 
work loads mapping on the most appropriate 
processing unit in real-time. The scheduler 
postulated uses workload profiling, energy 
modeling and run time system feedback to make 
intelligent scheduling decisions. In contrast to 
normal schedulers which simply optimize 
performance, our method is backed by energy-
performance trade-offs as well as real-time 
constraints. It supports the lightweight machine 
learning-based classification to optimize the 
mapping of workload to devices based on the 
characteristics of computing, and the energy 
efficiency profile. 
The motivation behind the work comes in the need 
to accomplish great performance in computations 
and also to minimize power consumption, 
primarily important in cases where there is limited 
battery life, heat limits or environmental 
sustainability. The proposed scheduler will allow 
smarter use of resources, which is not only 
extending device lifetime but also allowing 
scalable deployment of edge-AI workloads in 
heterogeneous embedded systems. 
 
Key Contributions 
 We build a profile-directed energy model of 

GPU, TPU and FPGA platforms, reflecting a 
realistic performance and power behaviour 
under workloads. 

 We introduce a dynamic task scheduler which 
undertakes a heuristic cost-optimized task 
mapping on the basis of its compute intensity, 
memory requirements and timing deadline. 

 We analyze the framework using a hybrid 
embedded testbed with up to 35 and 28 
percent in saving energy and latency 
improvement respectively as compared to the 
baseline schedulers. 

 
2. RELATED WORK 
The emergence in recent years of embedded 
computers and the edging-out of general-purpose 
computers have highlighted the startling trend of 
energy-aware scheduling analysis of 
heterogeneous platforms. Energy and performance 
trade-offs have been discussed in a few works of 
literature especially where several processing 
units with varying capabilities are used into a 
system together. 
 
A. Energy-Efficient Scheduling in Embedded 
Systems 
The problem of energy-aware scheduling has 
gained huge popularity in mobile and embedded 
systems. In [1] a dynamic voltage and frequency 
scaling (DVFS) DVFS based energy minimization 
technique for real time applications was proposed 
by the authors. Nonetheless, these are usually 
restricted to homogeneous CPUs and fail to 
address the complexities of heterogeneous 
accelerator designs. In [2], strategies of task 
partitioning were implemented in order to achieve 
the balance of performance and power but could 
not perform dynamically to dynamic workloads. 
 
B. Task Mapping for Heterogeneous Computing 
The heterogeneous systems have dealt with the 
issue of task mapping with both static and dynamic 
solutions. In [3] it was demonstrated that static 
scheduling algorithms can give high throughput, at 
the expense of flexibility and energy cost. This is a 
dynamic scheme and [4] leverages present-day 
heuristics or reinforcement learning to assign 
tasks to CPUs, GPUs, or FPGAs. Although effective 
at times, the given works tend to omit real-time 
constraints and thermal behavior of the embedded 
environments. Besides, TPUs are rarely 
considered, and they become more frequent in 
edge AI platforms. 
 
C. Machine Learning-Based Workload 
Classification 
Machine learning has turned out to be an effective 
method of forecasting the workload characteristics 
and informing the scheduling choices. In [5], a 
decision-tree workload classifier was incorporated 
in a task scheduler to heterogeneous multicore 
platforms. On the same note, [6] showed how 
neural networks were used to forecast the optimal 
resource assignment of deep learning workloads. 
These techniques are potentially useful, but in 
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most cases lack interoperability with fine-grained 
energy modeling or FPGA support. 
 
D. FPGA Offloading and Runtime 
Reconfiguration 
FPGAs have also been used to offload energy 
sensitive systems that are compute-intensive. In 
[7], authors introduced partial reconfiguration 
method, which allows reconfiguration at run time 
of the FPGA resources to changing workloads. The 
articles, like [8], concentrate on the acceleration of 
certain tasks by using CPU FPGA hybrid systems. 
The combination of FPGA reconfiguration and 
unified scheduling framework on GPU, TPU and 
FPGA, however, constitutes an open issue. Also, 
real-time systems need to pay attention to the 
reconfiguration latency and FPGA bitstream 
compilation time. 
 
Summary and Research Gap 
Similarly, solutions to every one of these areas 
have been proposed, but a coordinated plan that 
encompasses the parts of energy-sensitive 
scheduling, run-time task classification, and 
heterogeneous accelerator management (gpu, tpu, 
and fpgas) has not yet been provided with one 
framework to serve as its core. The current 
solutions overlook the energy limitation either 
because it is not adaptive to run-time changes, or 
that it does not support the wide variety of 
hardware backends. The gaps are filled in this 
paper, which describes a dynamic and energy-
aware task scheduler that can perform real-time 
decision-making across heterogeneous 
accelerators and which is practically evaluated on 
a real, embedded testbed. 
 
3. System Architecture and Platform 
Description 
3.1 Heterogeneous Embedded Platform 
The given energy-aware task scheduling 
framework is applied on a heterogeneous 
embedded environment that includes three types  

of accelerators CPU with three different kinds of 
accelerators: GPU, TPU, and FPGA, which present 
unique computing and energy features to provide 
maximum flexibility on different types of  
workloads. The NVIDIA Jetson Xavier NX is the 
GPU chip, which has a 384-core Volta GPU with TC 
of 48 and 6-core ARMCPU, so it is best used high-
throughput parallel applications that are 
associated with computer vision, inference of deep 
learning, and operations with matrices. In a 
scenario specific to AI inference where high 
performance / low power is needed, the system 
combines the Google Coral Edge TPU, a custom-
designed application-specific integrated circuit 
(ASIC) designed to accelerate the popular 
TensorFlow Lite framework, which supports most 
deep learning model formats, and aims to optimize 
compute operations running on quantized models 
with up to 4 trillion operations per second (TOPS) 
available using less than 2 watts of power. This 
means the TPU is optimal in low latency and low 
power edge AI applications like object detection 
and classification. The reconfigurable part is the 
Intel Arria 10 GX FPGA Development Kit with 
performance-enhanced logic cells, an embedded 
memory subsystem, and DSP slices, which allow 
designing custom data paths and streaming-
oriented pipelined execution. The FPGA supports 
OpenCL and even partial reconfiguration, so 
hardware-level specialization of tasks and energy-
efficient deterministic operation are viable. 
Combined, these accelerators provide a strong 
testbed, which is representative of real-life 
heterogeneous embedded systems, and that allows 
an in-depth assessment of the proposed scheduler 
under a continuum of compute-intensive, latency-
sensitive, and power-limited conditions. This 
arrangement does not only demonstrate the 
interrelationship between different processing 
architectures but also points at the difficulty of 
scheduling energy-aware in embedded systems 
with dynamically changing workloads and 
resource obligations. 
 

Table 1. Comparative Features of Heterogeneous Accelerators 
Feature GPU (Jetson Xavier NX) TPU (Coral Edge TPU) FPGA (Intel Arria 10 GX) 
Architecture 384-core Volta GPU + 6-

core CPU 
ASIC for quantized DNN 
inference 

Customizable logic w/ DSP 
blocks 

Peak Performance Up to 21 TOPS 4 TOPS ~150 GFLOPS (varies by 
design) 

Power 
Consumption 

~10–15 W <2 W 4–10 W (config-
dependent) 

Target Workloads Parallel computing, 
DNNs 

Edge AI inference Streaming, signal 
processing 

Programming API CUDA, cuDNN TensorFlow Lite (Edge 
TPU) 

OpenCL, Quartus, HDL 

Reconfigurability Fixed Fixed Partial/Full reconfigurable 
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3.2 Scheduler Runtime Layer 
The most important component of the suggested 
framework is the scheduler runtime level whose 
role is to coordinate smart tasking between the 
heterogeneous processing units, i.e., GPU, TPU, and 
FPGA using the feedback of the real-time system 
and the workload profile. The layer consists of 
three closely coupled modules that include an 
energy profiler and a workload classifier, a 
hardware abstraction interface; and a feedback-
pumped reassignment mechanism. The energy 
profiler constantly tracks the power used by tasks 
on each accelerator, and their execution latency, 
and provides that information as a dynamically 
updated energy-performance profile to the task 
classification engine. The lightweight machine 
learning models used by workload classifier to 
obtain the prediction of computations and memory 
demands of the incoming task include decision tree 
or support vector machine. These predictions help 
the scheduler in choosing the most appropriate 
accelerator in terms of performance efficiency and 

cost of energy applied. The system uses hardware 
abstraction layer (HAL) which provides a common 
API to deploy tasks, no matter whether there is 
hardware support by CUDA, TPU, or OpenCL. Such 
abstraction makes scheduler design simpler and 
also allows platform to be portable and extensible. 
In addition, a real-time feedback loop is provided 
that observes system conditions, e.g. queue length, 
thermal state, and device availability and causes 
the dynamic re-assignment of tasks when some 
pre-defined threshold is met, or when improved 
energy-performance trade-offs are made possible. 
This is because the closed-loop control allows the 
system to adaptively react to the changing 
workloads and the changes in the run-time 
condition so that the energy-efficient execution of 
tasks is achieved without the breach of the 
application-level application latancy and 
throughput requirements. As a whole, the 
scheduler run-time system is a smart middle-ware 
that converts base system event heterogeneity into 
optimized and synchronized system behavior. 

 

 
Figure 1. Scheduler Runtime Layer Overview 

 
4. METHODOLOGY 
4.1 Workload Profiling and Energy Modeling 
The initial stage in the proposed framework is 
elaborate workload profiling and energy modeling 
over the heterogeneous processing units so as to 
enable the intelligent and energy efficient task 

scheduling. All the computational tasks, including 
matrix multiplications and convolutional neural 
network (CNN) inference, as well as fast Fourier 
transforms (FFT), apply each type in a controlled 
condition manner in the GPU (NVIDIA Jetson 
Xavier NX), TPU (Google Coral Edge TPU), and 
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FPGA (Intel Arria 10 GX). Things such as execution 
time, energy consumption per operation, peak 
memory usage and thermal impact are a few of the 
key performance and energy measures that are 
gathered during these profiling runs. The on-chip 
statistics and power meters and software probing 
tools (e.g. tegrastats for GPU, Coral TPU profiler, 
and FPGA power monitors) are used to collect the 
data. 
The profiling is done with diverse values of input 
sizes and with diverse execution conditions so as 
to gather the scaling characteristics of diverse 
devices with different workloads. A prediction 
model based on supervised machine learning 
algorithms is made based on this raw information. 
This model uses as its training data a vocabulary of 
lightweight features identified per each task and 
they are: 
• Operation type: Categorizes the pattern of the 

computation (e.g. matrix multiply, CNN 
inference, FFT) because the different 
operations will have different profiles of 
performance against energy by hardware 
unit. 

• Memory usage: Displays the total and 
maximum amount of memory that is needed 
by the task, which is important to the 
suitability to the devices with finite or shared 
memory resources. 

• Input data volume: It impacts the transfer 
overhead of data and also affects the strategy 
of either using a batch or streaming approach. 

• Task periodicity: The periodicity with which a 
task is run which optimizes the task for 
latency-sensitive workloads as well as 
recurring workloads. 

Based on such features, the energy model 
speculates the expected energy and latency of 
executing a given task on any of the available 
processing unit. This allows the scheduler to be 
proactive and contextually aware in terms of 
balancing energy efficiency and the need to 
perform in real time. The profiling and modeling 
part can be considered to be the basis of the 
energy-aware task grouping and right device 
selection at the run time. 

 

 
Figure 2. Workload Profiling and Energy Modeling Flow. 

 
4.2 Task Classification Engine 
Task classification engine is very important in the 
sense that task scheduler should be able to make 
intelligent and energy-aware decisions in real-

time. The classification engine will essentially be a 
scheduler that must sort incoming tasks as being in 
one of three levels of urgency and criticality: hard 
real-time, soft real-time, and best-effort. These 
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levels are arrived at depending on the time 
limitation of each task. Hard real-time tasks are 
those where delayed system responses are 
intolerable to a large degree: task failure may 
occur because of slackness in the system-any 
degree of slackness can cause a task to fail-such as 
real-time object detection in automated car or 
anomaly detection in industrial automation. Soft 
real time is subject sensitive to latency, but is able 
to absorb a small amount of delay, as in video 
frame enhancement or interactive voice. Finally, 
when it comes to best effort work, timing 
constraints are not critical, and such work can be 
scheduled with reduced priority, e.g., time 
recording, data caching, or back-of-the-neck model 
learning. Such a classification of tasks guarantees 
the preference of tasks with higher urgency to use 
low-latency accelerators and leaves best-effort 
tasks to idle or energy-efficient units. 
It needs machine learning models to automate this 
process and accommodate dynamic flexibility: the 
classification engine includes lightweight 
classifiers, either decision tree or support vector 
machines (SVM), which can take the role of 
machine learning models. Such models are pre-

trained offline on historical profiling data 
containing such features as the operation type, the 
size of the input data and the estimated execution 
latency, memory footprint and periodicity. In the 
process of operation, each time a new task is 
encountered, its characteristics are evaluated and 
fed to the classifier which determines the 
suitability of use with the most suitable category of 
the resource and determines the suitability of the 
resource. Suppose a task might be categorized as a 
CNN inference that is highly frequent and input 
size is medium; the task could be targeted to the 
TPU, classified as soft real time, where a large 
matrix inversion task whose deadline is not strictly 
restricted could be classified as best-effort and 
scheduled to run on the FPGA when the device is 
idle. The classification does not only help in 
prioritizing critical tasks but also assist in energy-
saving optimization since the types of workloads 
may be assigned to the most appropriate 
accelerators. It is also possible to infer quickly and 
have little computational overhead due to the use 
of interpretable models, like decision trees, and the 
classification engine can therefore be useful on 
embedded devices running in real-time. 

 

 
Figure 4. Task Classification Flow 

 
4.3 Scheduler Design 
The scheduler that forms the core of the proposed 
framework will intelligently assign computational 
tasks to the heterogeneous resources of GPU, TPU 
and FPGA balancing energy efficiency and 
performance on a real time basis. It uses a hybrid 
schedule strategy that maintains both the static 
and dynamic parts in achieving this. During the 
static mapping step, well-known task 
characteristics, e.g. tasks frequently or 
systematically used, e.g. in a repetitive pipeline, 

tasks, are mapped onto the hardware accelerator 
boasting the most energy-efficient 
implementation. This makes the recurring 
workloads like fixed CNN layers or filtering in FFT 
form have low shot scheduling latency. Static 
mapping in particular is useful in tasks which are 
periodic or deterministic, where size and timing 
remain similar enough that the scheduler does not 
incur the overhead of making decisions during 
runtime, but can still make advantage of device 
selection optimisation. 
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In conjunction with the fixed mapping 
representation, the dynamic re-mapping element 
is turned on whenever some runtime variation in 
workload demands, system heat level, or power 
quotas occurs. As an example, when a desired 
accelerator is already saturated or undergoes high 
temperatures, then the scheduler can enable the 
dynamic migration of tasks to other compute 
devices with tolerable energy-performance ratios. 
This is through some mechanism of optimization 
of cost function in which both candidates being 
evaluated devices are processed on a weighted 
formula: 

Cost − α. Energy + β. Latency 

The weights 0 In the case of battery-powered 
systems, α can be increased to focus more on 
energy savings whereas latency-aware 
applications can configure 1 - (beta) with a larger 
weight. The scheduler keeps re-computing this 
cost function, on an on-going basis, on every 
possible task-device combination and chooses that 
mapping which minimizes the overall cost. Not 
only does such modular, hybrid strategy enhance 
the responsiveness of the system during dynamic 
conditions, but it also guarantees that it consumes 
as little energy as possible and does not lose real-
time behavior, which is why it is suitable for the 
edge-AI and mission-critical embedded systems. 

 

 
Figure 5. Scheduler Design Flowchart: Hybrid task mapping process combining static profiling and 

dynamic cost-based reassignment for optimal accelerator selection. 
 
4.4 System Implementation 
The envisaged energy-aware scheduler will be 
implemented as a middleware-based application 
that runs on the host CPU of the embedded system 
and is the conductor of the computation tasks 
assignment to the accelerators available. With this 
modular middleware creation, portability is 
guaranteed, and it is designed in such a way that 
no adjustments are needed to the application logic 
in order to provide seamless integration with a 

wide range of edge computing stacks. A Scheduler 
can directly access hardware accelerators via 
platform-specific APIs and drivers, providing a 
user-level interface to control hardware 
accelerators, but retaining control of very low-
level scheduling and data transfer timing. 
In case of executing tasks using GPU, the system 
applies its NVIDIA cuDNN and CUDA libraries, 
which can accelerate general-purpose parallel and 
deep learning computations. CUDA delivers 
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thread-level parallelism and memory management 
primitives and cuDNN delivers highly optimized 
routines common in workloads in the field of AI 
such as convolutional layers, pooling and 
activation functions. In the case of tasks that are 
matched to the TPU, the system is utilizing a 
lightweight inference framework, TensorFlow Lite 
for Edge TPU, which is designed to specifically 
support low-latency deep learning model 
(quantized models) inference on devices. TPU API 
delivers the abstraction of device interaction in 
addition to delivering the compilation tools that 
transform TensorFlow models into the format in 
which they can be executed on the Edge TPU. This 
route would be very valuable in vision based 
inferring systems where the energy or latency is 
important. The task execution using FPGA, the 
system employs pre-compiled OpenCL kernels 
which are bit streams precompiled offline to 
minimize the run time overhead. Such precompiled 

kernels are launched through the OpenCL host API 
calls which allows direct data access to the FPGA 
and running throughout optimized hardware 
pipelines. 
Its control loop includes the task serialization, the 
feature extraction, the task classification, the 
scheduling decision-making and disk task 
dispatching of the middleware. It also keeps 
runtime logs and gathers performance telemetry 
(e.g. energy, device usage, latency) which is used to 
generate the feedback loop in dynamic 
reassignment as system constraints vary. This 
methodology of clearly separating the control logic 
and device- specific implementations allows this 
flexibility, scalability and real-time responsiveness, 
allowing the system to be deployable on the edge 
in embedded AI systems, IoT gateways and 
heterogeneous smart-edge nodes with variable 
acceleration capabilities. 

 

 
Figure 6. System Implementation Architecture: Middleware scheduler managing task flow to GPU, TPU, 

and FPGA through platform-specific APIs with telemetry feedback integration. 
 
5. Experimental Setup 
5.1 Benchmark Tasks and Experimental Setup 
In order to analyze the efficacy and flexibility of 
the suggested energy-aware scheduling model, a 
vast range of benchmark tasks was chosen to 
reproduce the actual edge computing workloads 
with their variety levels in terms of the 
computation complexity, memory consumption, 
and sensitivity. The benchmark suite has four 
major categories as follows: (1) Object detection 

with YOLOv5, a deep convolutional neural network 
and has a significant accuracy and speed when 
applied in real-time vision applications, a 
representation of AI inference loads. The pre-
trained weights were mounted by the YOLOv5 that 
processed the input frames of 416 x 416 with 
variable rates to emulate varied streaming 
environments. (2) Fast Fourier Transform (FFT) 
and Inverse Fourier Transform (IFFT) tasks that 
are typical signals processing workload were 
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measured on different input lengths to measure 
pipeline behavior and compute bound task 
behavior at least the FPGA. Among others, matrix 
multiplications and convolution layers were 
chosen to offer computing kernels present in 
scientific computer applications and DNN backops; 
the kernels were tested in scattered as well as 
conducted spread across graphical bots. Gradient-
based real-time image denoising task based on 

convolutional neural networks (CNNs) was taken 
as an example of a low-latency, edge AI workload 
that is quality- and time-sensitive. To evaluate the 
ability of the scheduling framework to handle 
realistic multi-tasking these tasks were run in 
isolation and under mixed-load conditions across 
the GPU (Jetson Xavier NX), TPU (Coral Edge TPU), 
and FPGA (Arria 10 GX). 

 
Table 2. Benchmark Tasks Categorized by Type, Purpose, Latency Sensitivity, and Preferred Accelerators 
Task Category Purpose Latency 

Sensitivity 
Primary 
Accelerator(s) 

YOLOv5 Object 
Detection 

AI Inference Real-time vision, object 
tracking 

High TPU / GPU 

FFT/IFFT Signal 
Processing 

Transform-based DSP 
(audio/image) 

Medium FPGA 

Matrix 
Multiplication & 
Conv 

Linear 
Algebra/DNN 

Core DNN compute, 
scientific workloads 

Moderate GPU 

CNN-Based Image 
Denoising 

AI Inference Real-time visual 
enhancement 

High TPU / GPU 

 
5.2 Metrics Measured and Evaluation 
Methodology 
A thorough performance and efficiency measure 
was taken to determine how scheduler affects the 
system-level as well as the task-level behavior. 
Execution time (in milliseconds) was the main 
indicator, which defines the total latency between 
the task issue date and the completion date. This 
was essential in determining the suitability of the 
scheduler towards applications that had to do with 
real-time considerations. On-board power sensors 
in conjunction with vendor- specific telemetry and 
separate power meters were used to measure 
energy consumption (in Joules) and give an insight 
into the energy efficiency of each task-accelerator 
pairing. Also, the scheduler overhead was 
measured as a percent of the total execution time 
consumed in classification, decision-making, and 

tasks dispatching activities. This measurement was 
crucial in order to guarantee that the scheduling 
logic itself would not result in a large amount of 
delay especially in latency-critical situations. 
Lastly, system-level measurements (throughput 
(tasks per second)) and throughput of non-
malicious work (tasks per second)) were 
performed to extract how effective was the 
scheduler in keeping up performance as the 
workloads changed. These were calculated during 
the nominal and peak load scenarios to evaluate 
the robustness and the scalabilities of the 
scheduler. The set of varying tasks combined with 
the multi-dimensional set of metrics allowed 
conducting a thorough evaluation of the 
capabilities of the scheduler at optimizing 
simultaneously on energy and performance on 
heterogeneous embedded platforms. 

 
Table 3. Evaluation Metrics Used for Assessing Scheduler Performance and Efficiency 

Metric Unit Purpose Measurement Method 
Execution Time Milliseconds 

(ms) 
Measures latency from task 
dispatch to completion 

Timer-based profiling 

Energy 
Consumption 

Joules (J) Evaluates power efficiency 
per task 

On-board sensors + 
external power meters 

Scheduler 
Overhead 

Percentage 
(%) 

Assesses added latency from 
scheduling decisions 

Profiling execution time 
breakdown 

Throughput Tasks per 
second 

Measures sustained system 
output 

Total tasks completed over 
time 

Deadline Miss 
Ratio 

Percentage 
(%) 

Evaluates real-time task 
compliance 

Missed deadlines / total 
tasks 

 
6. RESULTS AND DISCUSSION 
The given energy-aware task scheduler was 
compared to the common approaches of static 

matching and round-robin scheduling approaches 
with a range of heterogeneous workload by testing 
deep learning inference, sign transformation, and 
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numerical operations. The high energy efficiency 
along with lesser execution latency of the 
proposed scheduler is quite evident by its 
experimental outcome. The average energy 
consumption of the scheduler was 4.9 J per task 
along with an average latency of 88 ms, against the 
round-robin (7.8 J / 123 ms) and performance-
only (6.3 J / 101 ms) baseline only achieves 
19.24%, respectively. The advances have been 
accredited to the density of the scheduler because 
of its capability to automatically allocate the 
responsibility to the most energy-efficient physical 
device in view of the real-time and the system load 
constraints. Moreover, the deadline miss rate was 
reduced to 5.1% as compared to 14.2 and 10.5 in 
round-robin and performance approach 
respectively, supporting its analysis of time-
sensitive embedded workloads. These proactive 
profiling, smart classification, adaptive scheduling 
allowed the system to gain significant increase in 
responsiveness and power. 
More target examination of the constituent-specific 
activity showed refined understanding of the 
functions of individual accelerator in 
heterogeneous execution of tasks. The GPU (Jetson 

Xavier NX) was extremely efficient in large-scale, 
parallel tasks, like matrix multiplications and bulk 
convolution, and it had much higher performance, 
at a higher energy cost, especially when used to 
perform neural network inference. The TPU 
(Google Coral Edge TPU) was the most energy-
efficient CNN-based inference accelerator through 
decreases in the batch sizes and quantized 
versions. It consistently performed fast execution 
without much energy overhead and was best 
suited in real-time applications, such as AI. It was 
FPGA (Intel Arria 10 GX) that was especially useful 
to deterministic workloads such as FFT/IFFT and 
pipelined data transforms where the energy-per-
task ratio produced by FPGA was the lowest 
among three when suitably configured using pre-
compiled OpenCL kernels. Though it has to be 
noted that dynamic profiling and real-time 
decision-making are complex tasks and that the 
proposed scheduler has test execution overhead of 
less than 2.5 percent, it can be confirmed that this 
scheduler can be used in an environment with 
limited resources and responsiveness is of high 
importance (such as embedded environment). 

 

 
Figure 7. Comparison of Scheduling Strategies 

 
The scalability of the booking system was also 
tested when the system was subject to a 
changeable load monitored in dynamic edge 
operation where the system load would increase to 
2 times the nominal task volume. In these heavily 
overloaded conditions the system achieved 
latencies of less than 100 milliseconds and its 
energy consumption was at worst compressed to 
only 15 percent of optimal, demonstrating that the 

scheduler flexibly balances throughput and power 
constraints. Nonetheless, there are certain issues. 
FPGA (re)configuration latency Real-time FPGA 
reconfiguration can have long delays on workloads 
that need to switch to different kernels frequently, 
making the scheduler less flexible in highly 
dynamic environments. Besides, TPU only 
supports quantized models, which may accentuate 
preprocessing requirements and even model 
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diversity. Such drawbacks indicate the necessity of 
more flexible scheduling tools. As work the 
adaptive scheduler using reinforcement learning 
that learns the task-device mapping to be optimal 
over time and learn policies depending on the 
workload history and system telemetry. It will also 
allow a wider use of the framework to other 

accelerators like NPUs or DSPs, with the ability to 
extend even further to all the embedded platforms 
in ultra-low-power or multi-core edge AI 
conditions. The improvements are willing to 
provide a scalable, intelligent, and hardware-
conscious scheduling algorithm to next-generation 
energy-limited embedded systems. 

 
Table 4.Performance Comparison of Task Scheduling Strategies for Heterogeneous Embedded Systems 

Scheduler Energy 
Consumption (J) 

Average 
Latency 
(ms) 

Deadline 
Miss Rate 
(%) 

Execution 
Overhead (%) 

Proposed Scheduler 4.9 88 5.1 <2.5% 

Round-Robin 7.8 123 14.2 - 

Performance-Only 6.3 101 10.5 - 

 
8. CONCLUSION 
The paper presented a new energy-efficient task 
scheduler domain that was designed as a 
heterogeneous embedded platform (with GPU, 
TPU and FPGA support). Based on the 
understanding that each accelerator has different 
energy-performance profiles, the proposed system 
will use detailed profiling of workloads, 
classification of tasks using machine learning, as 
well as a hybrid schedule, which integrates static 
mapping and re-allocation. The scheduler is smart 
enough to assign real-time tasks to appropriate 
processing unit, by maximizing a cost function that 
is dependent on balancing energy consumption 
and short execution latency. To conduct 
experimental evaluation using a wide range of AI 
and signal processing workloads, significant gains 
were exhibited with up to 35 percent lower energy 
usage and 28 percent lower latency achieved over 
traditional round-robin and performance-only 
designs. The framework has an advantage of high 
throughput and real-time responsiveness against 
variable load conditions and generates minimal 
overhead to prove its compatibility with edge-AI 
and embedded systems. Additionally, the 
architecture modularity and deployment of 
standardized APIs like CUDA, TensorFlow Lite, and 
OpenCL guarantee the wide hardware 
compatibility and scale. Nevertheless, even though 
it works, there is still the issue of handling FPGA 
reconfiguration latency and poor flexibility of TPUs 
when working with non-quantized models. 
Futurew many further explorations will be made 
such as incorporation of reinforcement learning-
based autonomous scheduling agents so that the 
system may continuously adapt to changing 
workload and system dynamics. The use of 
support of NPUs, DSPs, and other such emerging 
accelerators will also improve the adaptation of 
the framework to next-generation, low-power, 
intelligent embedded situations. 
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