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Industrial Internet of Things (1IoT) is reshaping the production line and
infrastructure-grade applications by making their operations smart
using distributed sensor networks and embedded computing to realize
intelligent automation, real-time analytics, and predictive maintenance.
But with machine learning, it is becoming one of the components in such
systems, and the security of the sensitive data used in the operation
becomes of vital necessity. Federated Learning (FL) has been suggested
as an effective method to conduct collaborative training of models on
distant IloT devices devoid of centralization of uncooked information,
which thus retains local confidentiality. Nevertheless, this does not
eliminate the privacy risks models face, including model inversion and
gradient leakage, which are still a threat to most conventional FL
systems, and in adversarial contexts. In order to bridge those
vulnerabilities, this paper proposes a new privacy-preserving FL design
that incorporates the Secure Multi-Party Computation (SMPC) into the
model aggregate process. In the suggested framework, many IIoT nodes
can jointly compute the encrypted model update using additive secret
sharing scheme to achieve the effect that neither the node nor the
aggregator can access to the raw update or the proprietary data. This
solves them specifically towards low-power, resource-constrained IloT
edge devices and, to guarantee that they can be computed in such a low-
resource environment, applies optimization techniques including model
quantization and lightweight cryptographic operations. To compare the
system, we test it on several industrial datasets, such as Industry-
MNIST, UCI Gas Sensor Array, and NASA C-MAPSS and observe the
performance by factors such as model accuracy, system latency,
communication overhead, and data leakage attack resilience. As results
in our experiments demonstrate, our SMPC-enhanced FL system
provides competitive accuracy levels with less than 1 percent accuracy
loss compared to regular FL whilst offering much better privacy
guarantees and preserving the ability to perform inference within real-
time. In addition, the framework can easily be scaled to different
numbers of [IoT nodes and can tolerate node dropout and malicious
bahavior. The study offers a safe, effective, and expandable platform of
implementing collaborative Al models in IIoTs, which opens the path
toward reliable industrial intelligence without negatively affecting data
security and the functioning of the system.

1. INTRODUCTION

such applications as predictive maintenance,

The emergent Industrial Internet of Things (I1oT)
development has transformed the conventional
manufacturing and industrial activities due to its
ability to provide cohesive communication, instant
sight, and data analytics. lIoT ecosystems consist of
a wide variety of interrelated edge devices, such as
sensors, programmable logic controllers (PLCs),
actuators, and embedded systems that are
constantly creating massive amounts of data
regarding the process of running a business.
Machine Learning (ML) has shown the
unprecedented possibilities of utilizing this data to

anomaly detection, quality control, and adaptive
process optimization. Nonetheless, the use of
centralized ML solutions means a significant threat
to the privacy and safety of data and business
activities.

The more conventional methods of centralized
training involve gathering information on several
IIoT nodes that are combined into a single cloud or
server. Not only does this breach the principle of
sovereignty of data and industrial requirements
governing compliance, but this puts sensitive
proprietary data at an elevated attack plane.
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Besides, industrial information regularly includes
information that is specific, safety-related and, in
the event of leakage, may result in competitive
disadvantage or, even, sabotage. To address those
concerns, Federated Learning (FL) has grown as
one of the paradigms of decentralized machine
learning, allowing training collective models on
decentralized devices in the edge without sending
raw data. Every device runs a local model with its
data and provides only model updates to a central
aggregator to train a global model.

FL on its own is not immune to privacy threats,
however as promising as it sounds. The close-by
rivalries can deny the gradients or subsets of the
models to conduct the demonstration of
membership, model inversion, or property-
inversion assaults to disturb the secure nature of
the local records. Moreover, in traditional FL the
aggregation procedure presupposes a central
trusted server that might not be possible or safe in
hostile industrial applications.

Secure Multi-Party Computation in
Federated Learning for Industrial Ler nit

Industrial loT

— &5
-
—

Model Server

Federated Learning

Figure 1. SMPC-Enabled Federated Learning Architecture for [l1oT

In solving these dire security and privacy
vulnerabilities, the paper suggests an architecture
that uses lightweight Inner Friction Federated
Learning leveraged by Secure Multi-Party
Computation (SMPC). SMPC is a cryptographic
primitives that enable several parties to compute
over their inputs in a joint manner whilst
preserving their inputs secrecy. Having the SMPC
process incorporated into model aggregation of FL,
we prevent any of the parties, among which lies an
aggregator, to obtain the information on the
individual model update and, therefore, the use of
a trusted third party is no longer needed. The
offered system applies additive secret sharing to
divide local model gradients into a number of
shares and distributes them across participants to
securely combine.

The architecture is specifically 1IoT compliant in
that edge devices are commonly limited in terms of
processing power, memory and bandwidth. In our
framework the cryptographic operations and
model communication overhead are optimized to

result in minimal latency and high scale. The
practical efficiency of such a solution is also
demonstrated through an extensive number of
experiments with real-world industrial datasets,
compared with traditional FL and FL with the
integration of differential privacy (DP).

The findings indicate that our SMPC-powered FL
framework can achieve high model accuracy and
yet be much more resistant to privacy attacks and
facilitate decentralized collaboration among IloT
nodes, since the latter is much more secure. The
objective of this work will be to perform federated
intelligence studies to securely deploy them into
industrial systems and ensure privacy-preserving
Al into such mission-critical tasks.

2. RELATED WORK

2.1 Federated Learning Industrial IoT

Federated Learning (FL) represents an interesting
paradigm that can be used to enable decentralized
intelligence in IloT-based applications, given that
privacy of information and low-latency metrics are
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essential. [1]Introduced a survey of FL, which is
projected to revolutionize edge intelligence
through collaborative learning, which does not
sacrifice locality. Nevertheless, they accepted that
there are open possible problems in securing
model updates against the leakage attacks.
[2]Precisely focused on the use of the FL in
heterogeneous industrial type, and suggested
optimization approaches that could solve the
heterogeneity of statistics and systems. Although
these contributions are quite important, they fail
to incorporate privacy-preserving cryptographic
protocols like Secure Multi-Party Computation
(SMPC), necessary in adversarial industrial
settings.

2.2 Secure
Distributed Al
The secure collaborative learning process has
extensively used SMPC to help prevent information
leakage by means of models aggregation.
[3]Formulated a secure aggregation mechanism of
FL that employs SMPC-based secret sharing in
order to guarantee the secrecy of the individual
client updates throughout the training process.
Their resolution was applied in big mobile-scale
settings, especially in case of the Gboard of Google.
In much the same vein, Mohassel and [4] proposed
a system, SecureML, wherein SMPC techniques are
used to realise privacy-preserving machine
learning, and to reach accuracy as well as
cryptographic security. Nevertheless, they are
mainly developed to support consumer-grade
systems and are resource-intensive, which does
not best fit into the IloT systems with limited
power and computing abilities.

Multi-Party Computation of

2.3 The I1oT Security issues

The IloT platform poses special security issues
such as device heterogeneity, physical
vulnerabilities and insecure channels of
interaction. [5]Provided a comprehensive survey
of the many security, privacy, and trust-related
challenges in IoT and how such challenges are not
addressed satisfactorily by traditional security
solutions in the industrial environments. They
promoted the use of lighter cryptographic services
and distributed models. These results highlight the
need to integrate privacy-preserving practices,
including SMPC, to the FL processes targeted at
[IoT systems with high resources utilization
requirements.

2.4 Gap in the research and contribution
Although current literatures have addressed either
FL or SMPC in a distributed Al system separately,
limited research on such a topic has been
performed on integrating SMPC into specific FL to
implement in IloT environments considering its
limitation and risks. The paper will fill this gap
with a new FL architecture that aims to be an
optimized implementation of global FL in terms of
latency and low-power adoption to industrial
machines. We are providing a system that not only
maintains the privacy, but also maintains the high
model accuracy, and robustness against
adversarial attacks on the IIoT deployments in a
scalable and bad weight way at the same time.

3. System Architecture

3.1 Overview

The secure or secure federated learning
architecture proposed in the Industrial [oT setting
is meant to accommodate decentralized training
but with the ability to protect the privacy of data
through cryptographic protection. The system
consists of several [IoT edge nodes, SMPC-enabled
aggregator (which could be centralized or
decentralized), and such coordinating entity called
as model server. Every edge node is an industrial
endpoint: a sensor, a robotic arm or PLC controller
that ingests data locally and trains a machine
learning model on its own. Rather than sending
unrefined data or gradients, every node performs
cryptographic processing to maintain the privacy
of data. The aggregate model updates (e.g., weights
or gradients, which are trained locally), are
operated upon by the SMPC Protocol Module to do
additive secret sharing and then the encrypted
shares are securely transmitted to any peer nodes
or to the aggregator. The aggregator node(s)
performs the task of creating the global model
update based on encrypted-shares received by it,
without accessing the information of any one party
or their model update. This promises privacy
preserving as well as tamper-resistant aggregation
process. Alternatively, there is the possibility of
having an orchestrator, that is, a model server,
which coordinates training rounds, controls which
nodes participate, and distributes the newly
updated global model to the participants. The
system enables synchronous and asynchronous
modes of federated training, allowing the dynamic
IIoT networks the scalability and robustness
needed.
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Figure 2. Block Diagram of SMPC-Enabled Federated Learning Architecture for IloT

3.2 Integration of SMPC Protocol

In order to make model aggregation perform in a
safe and non-leaky way, the architecture
incorporates the Secure Multi-Party Computation
(SMPC) relying on an additive secret sharing
scheme based on the SPDZ (Speedz) protocol. In
the scheme, each node contributing to this scheme
is split up to generate various random additive
shares of the local model update to send those
shares to the aggregates and / or the peer
participants. Such shares need to be added
together to build the initial gradient but do not
betray their constituents to anyone. The
specialization of the SMPC implementation to the
[IoT setting is by minimizing cryptographic
operations and communications overhead and
allowing it to execute even on low-power edge

devices. Moreover, the framework allows process
efficient and scalable secure aggregation of a high
number of industrial nodes, completing this task
using pre-computed random values and batch
processing of shares. The SPDZ-based protocol is
secure under semi-honest adversaries, and it
ensures that in case a set of participants acts in
collusion, they are not able to gather any
knowledge about model wupdate of another
participant. This secure aggregation property
eliminates the requirement of a trusted central
server hence making the learning process fully
decentralized and a single point of failure is
eliminated. Accordingly, the incorporation of SMPC
is the building block of the suggested architecture
that allows privacy-preserving collaborative
learning at the edge of industrial networks.
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I Node
reconstruct
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SMPC Module| SMPC | Slflare. —
tsend sharetas DISt;Ibl:ltlon \
0 aggregator send shares
or peers *es | toaggregator g/leor\clj::
. Global Model
Security Guarantee Update

¢ collusion-resistance

* no raw data exposure

Figure 3. Secure Gradient Aggregation via SMPC Using Additive Secret Sharing in IloT Federated
Learning
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4. METHODOLOGY

4.1 Problem Formulation

Following a Federated Learning (FL) framework
modified to the Industrial Internet of Things (I11oT)
context, we will think of a system with N spatially
distributed IloT edge nodes (e.g, sensors,
actuators, controllers) having their own local data
set, D; with index i € {1,2,..., N}These databases
are proprietary with sensitive operation data that
could be unique to individual industrial device or
process line. The joint goal is to train a single
machine  learning  model  globally,f(.;w)
parameterized by weight vector w generalizing
across all the distributed settings that does not
necessitate any of the nodes to relinquish access to
its raw data and intermediate computations.

The training mechanism associated with
minimization of a worldwide loss feature that
measures the total model error of each of
participating nodes. This is mathematically

summarised as:
N

minz B(f(Di;w))

=T
In this case A(.)is the task-specific loss (e.g. cross-
entropy in the case of classification or mean
squared error in the case of regression) and
f(D;; w)represents the prediction on dataset D;by
this model using the current weights w. The

outstanding question is how to do this
optimization in a cooperative way, without giving
any knowledge about the individual datasets D; or
the local gradients computed as part of training.
The direct transfer of gradients or update weights
(unprovided with raw data) is extremely
vulnerable to exposure and invasion of
confidentiality, as the bomber can regurgitate
latent characteristics of inversion of the model or
membership inference.

In order to achieve privacy and at the same time
facilitate distributed optimization, our solution
integrates Secure Multi-Party Computation (SMPC)
at the aggregation step. Gradients (or weights) are
not transmitted as plaintext, but rather the
gradient update is locally computed at each edge
nodeVa(f(D;; w)), encrypted under an additive
secret sharing scheme, and randomized shares of
the secret are sent to peer participants or an
aggregator node. Then the global model is updated
with respect to securely aggregated results so that
the contribution of each node could not be
revealed by another party. This would allow
preserving the accuracy and convergence
advantage of distributed stochastic gradient
descent (SGD) but protect the confidentiality of the
industrial data sources.
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Figure 4. Secure Federated Optimization Workflow Using SMPC in I[1oT

4.2 Secure aggregation

The original model (i.e., database) is on a central
aggregation node, and in classical federated
learning (FL), some other amount of nodes send a
model update (i.e., gradients or weight deltas) to
the central aggregator in order to compute a
weighted mean of the updates to update the global
model. However, the privacy attacks can be
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applied, and raw gradients may include the
knowledge about the wunderlying data. To
overcome such a limitation, our system is based on
secure aggregation, including Secure Multi-Party
Computation (SMPC) that enables calculating a
global change without exposing anyone to model
any model of the respondent.

Secure aggregation protocol works as follows:
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1. Gradient Sharing via Secret Splitting:After
completing a local training epoch, each edge
node i computes its gradient update Aw;
based on its private dataset D;. Instead of
transmitting Aw; directly, the node performs
additive secret sharing: the update is split
into n random shares, such that the sum of all
shares reconstructs the original gradient.
Mathematically, for each component of Aw;,
the node generates random values
Si1,Si2) s Sin—1, and sets s, =Aw; —

}1:—11 s;j- This ensures that no single share
reveals any
update.

2. Share Transmission:The generated shares
{siil,silz,...,si,n}are securely transmitted to
either:

» A central aggregator, or

information about the true

» Peer nodes in a decentralized
aggregation setting. Communication
channels may use TLS or authenticated
encryption to prevent eavesdropping
or tampering during transmission.

3. Secure Aggregation and Model Update:The
aggregator node collects all shares from the
participating nodes and performs element-
wise addition across all updates. Due to the
additive property of secret sharing, the final
aggregated sum:

N N n
Yau-y3,
i=1 i=1j=1
Can be computed without ever revealing any
individual Aw;. The global model is then
updated using this aggregated result.

TLS/secure channel

Edge Node

compute
local gradient

— T

Aggregator
Node

Secret Sharing| 46
Module
split each Aw; —->nnap-
into n random
shares -
! *
Optional D

decentralized
variation
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no individual
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Figure 5. SMPC-Based Secure Gradient Aggregation Process in Federated Learning

4.3 IIoT optimization

Limited computational power, memory capacity,
and bandwidth are also typical of industrial IoT
settings where resources allocated to edge devices
are very scarce. Thus, to keep the suggested Secure
Multi-Party Computation (SMPC)-enabled
Federated learning construction working in such
surroundings efficiently, huge architectural and
algorithmic optimizations are needed. In this
direction, we adopt model compression
procedures such as quantization and sparsification
to limit the size and complexity of both gradient
compression and the number of operations that
gradients have to go through during every training
round that happens in the course of a federated
training procedure. Quantization lowers the
accuracy of model parameters (e.g. float32 to
integer8), which dramatically reduces both the
data being sent and the memory required to
perform the computation. Scarification omits
temporarily (and possibly permanently) some of
the least meaningful gradients by filtering a

threshold in terms of magnitude, thereby reducing
the number of non-zero entries in the update
vector to a minimum, and thereby reducing the
optical and storage cost of communication.

Beyond model-level compression we embrace the
lightweight cryptographic libraries like PySyft, TF
Encrypted or home-grown C-based SMPC modules,
tailored toward embedded hardware. The
assumption here is that these libraries will be able
to perform secure sharing and aggregation
functions with low cryptographic overhead, so that
even low end systems like Raspberry Pi, Arduino-
compatible boards or old PLC software are feasible
to share participation in secure federated training.
Additionally, to guarantee the optimal convergence
of the system in the presence of dynamic
workloads and hardware variations; we propose
an adaptive learning rate strategy, which
adaptively resets learning rates of all edge nodes
considering the balance between the local
computation capability, convergence rate and
network robustness. In this dynamic tuning
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scheme, every device acts to its best without
overwhelming its processor or the communication
interface.

All of these optimizations together mean that the
following framework can be implemented in the

highly constrained environments of the IloT, with
excellent privacy guarantees and relatively good
model performance. This renders the system very
applicable in real life industrial infrastructures
where heterogeneity and scalability are essential.

Table 1. Optimization Techniques for SMPC-FL in lloT Edge Environments

Optimization Purpose IIoT Benefit
Technique
Quantization Reduces precision of model | Minimizes memory footprint
parameters (e.g., 32-bit to 8-bit) | and lowers communication
overhead
Sparsification Retains only high-magnitude | Decreases number of non-zero
gradients during updates updates, reducing data
transmission
Lightweight Crypto | Uses efficient SMPC | Enables secure operations on
Libraries implementations (e.g., PySyft, | resource-constrained edge
TF Encrypted) devices
Adaptive Learning Rate Dynamically adjusts learning | Improves training efficiency
rate per device capabilities across heterogeneous IloT
nodes
Batching of Secret Shares | Aggregates updates in mini- | Reduces computation and
batches before encryption transmission frequency
Precomputed Pre-generates randomness for | Accelerates SMPC execution
Randomness secret sharing schemes during training rounds

5. RESULTS AND DISCUSSION

5.1 Comparison of performance

In order to approve the efficiency of the suggested
SMPC-enhanced Federated Learning (FL) solution
in the Industrial IoT (IIoT) conditions, we provided
an experimental study analysis that compared
three primary approaches with the identical
infrastructure setup as that used to implement the
proposed framework: traditional Centralized
Machine Learning (CML), Vanilla Federated
Learning (VFL), and Federated Learning with
Differential Privacy application (FL + DP). The
used experiments included three datasets, relevant
to IloT: Industry-MNIST dataset and UCI Gas
Sensor Array, as well as NASA C-MAPSS in the
context of their focus on various industrial sensing
and operational problems. As the results indicate,
the centralized model had maximal accuracy with
F1-score of 0.976 and accuracy of 97.2%, though at
the cost of extreme privacy risk level, which proves
inappropriate when it comes to sensitive industrial
applications. Vanilla FL had less accuracy (95.4%)
and F1-score (0.951) and caused moderate privacy
leakage risk because of sharing unencrypted
gradients. Although the FL+DP method enhanced
privacy at a given level of differential privacy of
93.6% accuracy, the method had the longest
training time and communication overhead. By
comparison, the presented FL + SMPC showed a
competent balance between the valued accuracy,
94.8 percent, Fl-score, 0.944, and the privacy
leakage risk that is determined as "Very Low."
Despite marginally poor interaction in accuracy
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(minus 0.6% relative to VFL), the technique
provided a dramatic rise in the privacy assurances
at similar communication and training demand.
Having communication 1.3 MB/round and average
training time of 125.7 seconds, our strategy was
widely practical in two aspects: to be secure and
scaleable in IloT application and also quite
relevant in practice in industrial Al work requiring
real-time sensitivity in both model performance
and data privacy.

5.2 Overhead on
Computation

Although this will add a relatively large 15 per cent
increase in the per-round communication
overhead as compared to Vanilla Federated
Learning (VFL), Secure Multi-Party Computation
(SMPC) is still operated reasonably within the
boundaries of the Industrial [oT (IIoT) setup. This
extra overhead is negated successfully using
additive secret sharing and the method of batching
where the number and size of shares to be sent is
optimized and thus saves bandwidth in a network.
In order to understand the computational viability
of the proposed framework on a standard IloT
hardware we carried out deployment tests on its
constrained edge computing hardware including
the Raspberry Pi 4 and the NVIDIA Jetson Nano. On
the Raspberry Pi, the average usage of CPU was
54.2%, the amount of memory was 148 MB, and
the inference latency was 156 milliseconds,
whereas the Jetson Nano worked even better with
43.7 percent CPU, 132 MB of memory, and a very

Communication and
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low latency of 88 milliseconds. These findings
reveal that the SMPC-enabled FL framework is not
only secure, but also lightweight and feasible to be
applied in different real-time edge applications,
which is acceptable to be implemented in various
industrial contexts where low-power and latency
requirements are involved.

5.3 Analysis Privacy and Security

In order to evaluate the security resilience of the
suggested SMPC-enhanced Federated Learning
robust, we carried out two popular privacy attacks,
namely, model inversion and membership
inference attack. In Gradient Inversion Attack,
according to the discussed methodology by Zhu et
al. (2019), an attacker tried to recover training
examples based on joint gradients. Although this
attack partially succeeded in Vanilla Federated
Learning (VFL), it did not succeed in our SMPC-
integrated system at all because the encryption
and randomization of individual updates, through
additive secret sharing, had practically made them
completely unreadable, and trying to reconstruct
any input sample in a meaningful way would have
been impossible. Also in the Membership Inference
Attack, in which the goal is to identify whether
some data item exists within the training set of a
model, the attacker was considerably less accurate
in their classification tasks when subjected to a
FL+SMPC scheme, with 88.5% accuracy on VFL,
and mere 54.1% with FL+SMPC. Close to random
level performance presupposes a considerable
elevation of privacy preservation, and adversaries
cannot statistically infer the membership in the
dataset. These findings firmly rely that SMPC
integration leads to strong data leakage resistance,
making sure that even strong inference-based
attacks do not breach individual training samples
or model contribution in IIoT federated settings.

5.4 Fault Tolerance and scale-up

In order to test the scalability and robustness of
the proposed Federated Learning scheme based on
SMPC, we tested the scheme through the
evaluation in different numbers of IIoT clients,
with 10 to 100 nodes. These findings proved that
the system is effectively scaled, where training
time scales sub-linearly with the number of
participating nodes. The parallelism of the additive
secret sharing and aggregation mechanisms has
been pinpointed as the reason behind this
desirable scaling behavior as it helps share and
spread the computational burden and decreases
synchronization points. In addition to that, the
framework has high fault tolerance ability. The
protocol showed robust convergence of the global
model even in the presence of up to 30 percent of
nodes having to drop or fail in communication.
This strength comes with it being resilient to the

SMPC protocol that can reconstruct aggregate
updates based on the partial shares without loss of
integrity and security of the computation. Such
results support the idea that the designed system
will be suitable to scale to large-scale and changing
[IoT applications where node availability and
network reliability might change.

5.5 Simulation of Industrial Use-Case

In order to justify the real-world applicability of
the proposed SMPC-enhanced Federated Learning
architecture, a simulation of a production line in a
smart factory with 20 heterogeneous edge devices,
simulated sensors, programmable logic controllers
(PLCs), and vision-based inspection systems, was
simulated. These tools jointly trained a structural
defect model using its locally created and
distributed  datasets = without  exchanging
unprocessed datasets. SMPC protocol was
designed to achieve privacy in their training on
model updates through aggregation in a
confidential manner. The system attained large
predictive accuracy of 94.2 percentage rate of
defect detection that 1is befitting industrial
applications of quality control. Above all data
leakage incidents were not recorded throughout
the simulation which proves the high level of
security ensured by the framework. This
deployments show the viability and efficiency of
SMPC- FL in practical complex industrial settings
to enable safe and privacy-preserving industrial-
scale Al automation in factories.

5.6 Discussion Summary

Proposed Federated Learning model combined
with Secure Multi-Party Computation (FL + SMPC)
has a number of strengths that imply that the
technology can be deployed in the context of
Industrial IoT (IIoT) with a small number of
manageable  trade-offs. = Regarding privacy
guarantees, the framework sets privacy levels
almost as high as possible, by removing the raw
gradient exposure risks completely using secret
sharing, resulting in a slight overhead in
communication, however. At a modelling
performance perspective, FL. + SMPC shows nearly
the same accuracy levels as vanilla FL, and a minor
reduction is caused by quantization and noise
associated to the encryption. In the context of
system support, the framework has already been
able to validate support on resource-limited
systems like Raspberry Pi, Jetson Nano and even
on Arduino-class microcontrollers, and thus
demonstrates its low cost design; nevertheless, it
requires the use of crypto-efficiency focused
firmware to be able to support secure
computations effectively. Finally, the architecture
has industrial scalability in that it has worked in
arrangements that use 10 to 100 nodes, although

103 Electronics, Communications, and Computing Summit | Jan - Mar 2025



Charpe Prasanjeet Prabhakar et al / Secure Multi-Party Computation in Federated Learning for Industrial

[oT

the viable implementation needs bandwidth-
conscious aggregation policies to ensure
responsive and congestion-free networks. In

Communication Overhead

Privacy Protection

general, the framework has an impressive balance
between the levels of security, accuracy, and
applicability in IIoT applications in real life.

Scalability

System Compatibility

Model Performance

Figure 6. Key Attributes of the Proposed SMPC-FL Framework in [IoT

Table 2. Performance and Privacy Evaluation of FL Approaches

Method Accuracy F1- Communication Training Privacy
(%) Score Overhead Time (sec) Leakage
(MB/round) Risk
Centralized 97.2 0.976 | N/A 86.5 High
ML
Vanilla FL 95.4 0951 |11 120.2 Moderate
FL + DP | 936 0927 | 1.3 130.6 Low
(e=1.0)
FL + SMPC | 94.8 0944 | 1.3 125.7 Very Low
(Proposed)
6. CONCLUSION real-world industrial application, including

We have presented a secure, scalable and
lightweight Federated Learning (FL) framework
suitable to Industrial IoT (IloT) systems,
augmented by the use of Secure Multi-Party
Computation (SMPC) to support industrial IoT
(IIoT) systems, and provided validation and proof-
of-concept. With the help of additive secret sharing
and lightweight cryptographic protocol, the system
supports keeping the process of model updates
private and resistant to inference attacks without
the requirement of a trusted central aggregator.
Investigations on large data resources that belong
to a variety of IloT-related datasets and hardware
systems showed that the suggested methodology
behaves well in balancing privacy protection,
model accuracy, and communication efficiency and
compatibility on an edge device. It is worth noting
that the framework supported a significant level of
detection performance and strong convergence,
even when facing adversarial effect, mass
deployment, partial node failures, et cetera. It has
also demonstrated its practicality when applied to
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examples of smart factory simulations, including a
variety of edge components, such as PLCs and
sensors. The presented results provide bare
evidence of how SMPC-enhanced FL can be utilized
as the technology base of secure collaborative Al in
mission-critical I[loT applications with utmost
importance allocated to data secrecy, system
diversity, and reliable operation. As future work,
this framework is promising to be generalized in
future to utilize hybrid cryptographic mechanisms
including a combination of SMPC and Differential
Privacy or Homomorphic Encryption to improve
resiliency against more powerful adversaries. Also,
the combination with the decentralized trust
systems such as blockchain and finally
enlightenment of the auditability, accountability,
and secure federated coordination in the trustless
industrial playground will be discussed.

REFERENCES

[1] Kairouz, P., McMahan, H. B., Avent, B., Bellet,
A., Bennis, M., Bhagoji, A. N,, ..& Zhao, S.

104



Charpe Prasanjeet Prabhakar et al / Secure Multi-Party Computation in Federated Learning for Industrial

[oT

105

(2021). Advances and open problems in
federated learning. Foundations and
Trends® in Machine Learning, 14(1-2), 1-
210. https://doi.org/10.1561/2200000083
Li, T., Sahu, A. K., Talwalkar, A., & Smith, V.
(2020). Federated  optimization in
heterogeneous networks. In Proceedings of
Machine Learning and Systems (MLSys).
Retrieved from
https://proceedings.mlsys.org/

Bonawitz, K. Ivanov, V. Kreuter, B,
Marcedone, A., McMahan, H. B., Patel, S., ..&
Seth, K. (2017). Practical secure aggregation
for privacy-preserving machine learning. In
Proceedings of the 2017 ACM SIGSAC
Conference on Computer and
Communications Security (pp. 1175-1191).
https://doi.org/10.1145/3133956.3133982
Mohassel, P., & Zhang, Y. (2017). SecureML:
A system for scalable privacy-preserving
machine learning. In 2017 IEEE Symposium
on Security and Privacy (S&P) (pp. 19-38).
IEEE. https://doi.org/10.1109/SP.2017.12
Sicari, S., Rizzardi, A., Grieco, L. A., &Coen-
Porisini, A. (2015). Security, privacy and
trust in Internet of Things: The road ahead.
Computer Networks, 76, 146-164.
https://doi.org/10.1016/j.comnet.2014.11.
008

Shokri, R., &Shmatikov, V. (2015). Privacy-
preserving deep learning. In Proceedings of

[7]

(8]

[9]

[10]

the 22nd ACM SIGSAC Conference on
Computer and Communications Security (pp.
1310-1321).
https://doi.org/10.1145/2810103.2813687
Abadi, M., Chu, A., Goodfellow, 1., McMahan,
H. B, Mironov, I, Talwar, K, & Zhang, L.
(2016). Deep learning with differential
privacy. In Proceedings of the 2016 ACM
SIGSAC Conference on Computer and
Communications Security (pp. 308-318).
https://doi.org/10.1145/2976749.2978318
Melis, L. Song, C. De Cristofaro, E.,
&Shmatikov, V. (2019). Exploiting
unintended feature leakage in collaborative
learning. In 2019 I[EEE Symposium on
Security and Privacy (SP) (pp. 691-706).
IEEE.
https://doi.org/10.1109/SP.2019.00029
Geyer, R. C, Klein, T., &Nabi, M. (2017).
Differentially private federated learning: A
client-level perspective. In arXiv preprint
arXiv:1712.07557.
https://arxiv.org/abs/1712.07557

Zhang, C., Xie, Y. Bai, H, Yu, B, & Jin, Y.
(2020). BatchCrypt: Efficient homomorphic
encryption for cross-silo federated learning.
In USENIX Annual Technical Conference (pp.
493-506).
https://www.usenix.org/conference/atc20/
presentation/zhang

Electronics, Communications, and Computing Summit | Jan - Mar 2025


https://arxiv.org/abs/1712.07557

