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 With respect to the industrial infrastructures, Cyber-Physical Systems 
(CPS) are considered as one of the fundamental units, where compute, 
network, and physical processes are combined to support real-time 
monitoring and decision-autonomy. With the addition of complexity and 
interconnection of these systems, it is paramount to maintaining the 
reliability of availability of these systems and reducing unexpected 
outages. Classical forms of maintenance reactive or pre-planned are 
inadequate in dynamic situations where degradation patterns of the 
components evolve with time. To counter this difficulty, this paper 
suggests a new system architecture that allows streaming big data 
analytics allowing real-time predictive maintenance in CPS. The 
framework combines distributed stream processing platforms like 
Apache Kafka, and Apache Flink and adaptive machine learning models 
that run at the edge and cloud levels. The system is able to identify 
anomalies at an early stage, make remaining useful life (RUL) estimates 
and initiate proactive maintenance practices before failure occurs, by 
processing exhaustive streams of high-velocity sensor data never 
ceasing in their processing. One of the most important parts of the 
proposed architecture is the conduct of concept drift detection and 
online learning methods, with which the model could adjust to the 
evolution of system behavior without being retrained. Edge devices are 
used to preprocess and perform an inference with low latency, whereas 
updates in the model and long-term analytics are performed in the 
cloud. The framework was tested on the NASA C-MAPSS turbofan 
engine degradation dataset and actual-time data of smart 
manufacturing testbed. Its performance shows that the concept at hand 
is not only highly accurate (fault classification accuracy exceeding 94 
percent with a latency of less than 100 milliseconds), but it also 
virtually eliminates mean time to failure (MTTF) and improves overall 
maintenance efficiency. Moreover, the system is robust with concept 
drift and sensor noise, which is an indication that it is highly applicable 
to be utilized in the Industry 4.0 environment. The value of this work to 
the field is that the proposed solution of predictive maintenance of CPS 
is presented as scalable, adjustable, and the solution that meets the 
requirements of low latency. It will lead to the era of smarter industry 
operations based on real-time intelligence. 
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1. INTRODUCTION 
Cyber-Physical Systems (CPS) Engineered systems 
are the systems that combine mechanical and 
physical processes using computational control 
and network communication. They are the 
technological basis of Industry 4.0 and allow 
intelligent automation to be carried out in 
manufacturing, energy, transportation and 
healthcare sector. CPS provides the ability of real-
time interaction between the physical and digital 
worlds by embedding sensor, actuators, and 
control logic into tangible assets. Self-monitoring, 
self-diagnosing, and an adaptive decision-making 

capacity are facilitated by this integration and have 
a significant benefit in efficiency and productivity 
of the operation. Nevertheless, this high degree of 
coupling can also lead to an increased possibility of 
the failure propensity (also referred to as a 
cascading failure) once any faults are missed, and 
this is why reliability and availability are 
paramount in mission-sensitive applications of 
CPS. 
Risk of unplanned systems failures is one of the 
other big problems with CPS, as such failures may 
lead to high updates and loss of production or even 
safety hazards. Conventional maintainence 
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strategies including reactive maintenance (repair 
after failure) and preventive maintenance (timely 
scheduling) are not very effective since they either 
result to overuse of resources, or failure to rectify 
problem in due time. These techniques lack an 
ability to properly identify minute degradation 

trends or respond to changing operating 
environments in complex and data rich settings. 
This causes an increasing demand of intelligent, 
data driven maintenance plans to identify and 
forecast system anomalies and nip them in the bud 
before they grow out of hands to critical levels. 

 

 
Figure 1. Block Diagram of Predictive Maintenance Architecture in Cyber-Physical Systems Using 

Streaming Big Data Analytics 
 
With the possibility of big data analytics, Predictive 
Maintenance (PdM), now has the potential to make 
a significant shift as it works on the basis of the 
previous experience and current sensor 
information to predict the upcoming failure and 
improve maintenance fixing times. Although 
traditional PdMs are built around batch data 
processing, this type of processing could not be 
used in real-time CPS systems where large-volume 
data streams continuously appear according to a 
certain velocity. The proposed framework in this 
paper pioneers an integrated approach to 
streaming big data analytics with adaptive 
machine learning to integrated distributed design 
solutions with the objective of offering scalable 
and real time predictive repairs. Amongst the 
contributions of this work, one may: (i) a strong 
CPS-oriented system with Apache Kafka and 
Apache Flink at the core of low-latency stream 
processing, (ii) scalable fault prediction based on 
online learning models that takes into account 
concept drift, and (iii) a hybrid edge-cloud 
deployment model, which is responsible and can 
guarantee responsiveness and efficiency in 
resource allocation. All the innovations increase 
the field of intelligence, real-time maintenance of 
next-generation industrial system. 

2. RELATED WORK 
PdM has now changed to the strategy of relying on 
data instead of rules and schedules that directional 
data on previous issues and utilization of sensor 
data on anticipated equipment malfunctions. Initial 
PdM approaches mainly consisted of the use of 
batch methods, in which massive amounts of 
sensor data were gathered and analyzed at regular 
intervals by employing off-line based statistical or 
machine-learning models. Such conventional 
methods, which are effective in fixed systems, 
cannot cater to the latency as well as dynamic 
adaptation requirements of real-time Cyber-
Physical Systems (CPS) [1]. 
Recent researches have considered how machine 
learning (ML) and deep learning (DL) processes 
can be implemented into CPS-related maintenance. 
One such example is that of Lee et al. [2] which 
suggested a long short-term memory (LSTM)-
based PdM model to study time-series degradation 
signals of industrial equipment. The model was 
also very accurate but lacked promptness in fault 
detection since it relied on batch (versus real-time) 
processed data via the Hadoop and Spark 
technologies. Relatively, a hybrid ML model that 
involved decision trees and support vector 
machine implementations in an azure stream 
analytics pipeline to identify early anomalies in 
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manufacturing systems was proposed by Zhang et 
al. [3]. This architecture was capable of providing 
some degree of stream-based analysis but became 
very cloud resource dependent, and also had 
issues locally with latency and horizontal scaling in 
an edge based focused CPS world. 
The latest trend aims at counteracting these 
shortcomings using real-time stream processing 
frameworks. Apache Kafka has also turned out to 
be a reliable distributed event streaming 
infrastructure in the processing of high throughput 
data ingestion. It can be used with Apache Flink or 
Spark Streaming job to provide low-latency 

computation over sliding windows and dynamic 
model inference. Nevertheless, most current 
implementations do not have native support of the 
edge devices that are necessary to minimize 
latency and offload the computational processes 
that need to be served by the centralized cloud 
resources. Moreover, the majority of models are 
incapable to address the concept drift problem, 
which often occurs in the changing CPS 
environments, as failures may have different 
signatures caused by wear, reconfiguration, or 
differing operational loads. 

 
Table 1. Comparative Summary of Existing Predictive Maintenance Approaches in CPS Environments 
Author Method Tools Used Limitations 
Lee et al. (2021) LSTM-based PdM Hadoop + Spark Batch-only, high latency 
Zhang et al. (2022) Hybrid ML Azure Stream Analytics Cloud-dependent, limited 

scalability 
Liu et al. (2020) Online SVM Apache Storm + Kafka No drift handling, low 

accuracy under load 
Kim et al. (2021) CNN + RUL Estimation TensorFlow + Edge GPU Lacks stream processing 

capability 
 
Regardless of these innovations, there are still 
some essential gaps in existing literature: (i) the 
majority of PdM solutions lack the mechanism of 
online learning, (ii) edge-cloud hybridization 
remains unexploited or weak, and (iii) the flexible 
management of concept drift is not yet generic. 
The proposed study seeks to overcome these 
difficulties through a real-time, streaming analytics 
based CPS-specific PdM framework that is highly 
resilient to faults, has the ability to orchestrate 
between the edge and the cloud, and partakes in 
lifelong learning. 
 
3. System Architecture 
The model of system architecture of Cyber-
Physical Systems (CPS) proposed to provide 
maintenance based on prediction serves as an 
extension of the real-time analytics, elasticity and 
adaptability to the heterogeneous environment of 
the industrial world. On the lower level, sensor 
nodes are incorporated into physical assets where 
we intensively measure important parameters 
(temperature, vibration, current, and pressure). 
These sensors produce high frequency data 
streams which get transmitted to local edge 
computing devices and initial preprocessing 
procedures such as noise filtering, data 
normalization and compression takes place. This 
not just minimizes transmission overhead but it 
also allows quick detection of anomaly around the  

source. The resulting preprocessed data is then 
consumed into a Kafka-based distributed 
streaming bus serving reliable, scalable and low 
latency data transport throughout the system. 
Kafka pipeline posts streams into the processing 
engines like Apache Flink or Spark Streaming that 
apply window-based analytics, feature extraction 
and anomaly scoring in approximate real-time. The 
resulting understanding is represented in visual 
ways on real time dashboards and alerting 
systems, allowing operators to respond to trouble 
proactively, before it runs out of hand. At the same 
time the raw and intermediate data streams are 
passed up to the cloud layer where more 
computationally exhaustive operations can be 
carried out, including machine learning model 
training, hyperparameter tuning and federated 
learning updates. The cloud is also used to 
synchronize the world-wide model on the edge 
devices so that a similar learning process is 
compatible throughout the network. This 
compound design takes advantage of the best 
features of edge and cloud computing: edge 
computing low-latency response and local razor-
sharp intelligence and cloud computing global 
optimization and long-term storage ability. The 
architecture is modular and scalable in nature and 
can be applied to various CPS applications in the 
manufacturing, energy, and other vital 
infrastructural sectors. 
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Figure 2. System Architecture for Streaming-Based Predictive Maintenance in Cyber-Physical Systems 

 
4. METHODOLOGY 
4.1 Data Acquisition and Preprocessing 
The major initial step in an effective 
implementation of a predictive maintenance 
strategy in a Cyber-Physical Systems (CPS) must 
entail high-quality data acquisition and 
preprocessing processes. The employed sensor 
types in the proposed architecture will be diverse, 
such as vibration, temperature, current, and 
voltage and will appropriately be installed in the 
industrial machinery and assets. Such sensors 
constantly observe the working condition of the 
mechanical and electrical elements as well as 
generate rapid, multivariate time-series streams. 
The vibration sensors also measure the mechanical 
vibrations that signal the bearing wear or 
imbalance of the shaft, the temperature as well as 
current sensors indicate the thermal stresses and 
currents anomalies respectively. Load tests or 
degradation of insulation are identified with the 

help of voltage readings. Such sensor is the basis of 
health monitoring and fault detection in real time 
using this heterogeneous sensor data. 
To cope with this incessant flow of sensor data to 
be processed and analyzed, the system uses sliding 
window segmentation. The incoming time-series is 
partitioned into fixed length overlapping windows 
and each window captures the state of the system 
on a very fine temporal scale. An example would 
be the use of a 5-second window with 1-second 
overlap which would allow the system to keep 
temporal dependences as well as have frequent 
updates to be analyzed. In every window, 
statistical and frequency-domain features (root 
mean square (RMS), skewness, kurtosis, and 
spectral energy) are derived to depict the actual 
state of the equipment. This makes incremental 
computation, fewer memory costs and online 
learning possible by providing feature vectors in 
near real time. 

 

 
Figure 3.Flowchart of Sensor Data Acquisition and Preprocessing Pipeline in CPS-Based Predictive 

Maintenance 
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In further improving consistency and reliability of 
the model inputs, each of the streams of the 
features is z-score normalized. Normalization of z-
score converts the raw sensor recordings into 
standardized scores on the basis of its mean and 
standard deviation of a predefined window. The 
effect of the differences in scale among sensors is 
reduced by this normalization process and 
convergence of machine learning models is 
improved by centering the features around zero 
and forcing unit variance. Moreover, it assists in 
the stabilization of the learning process with non-
stationary operating conditions, which occurs 
easily in the industrial CPS. Together, this powerful 
data input stream and preprocessing flow will 
enable the system to produce quality, normalized 
feature representation that is needed to make 
precise and timely predictive maintenance 
decisions. 
 
4.2 Stream Processing 
The proposed architecture uses a stream 
processing engine that real-time analyzes data 
collected by sensors as Cyber-Physical Systems 
(CPS) produce a lot of fast moving, non-stop data. 
In particular, Apache Flink is used because it is 
characterised with the best event-time processing 
functionality and low-latency operations as well as 
ability to operate with exactly-once semantics. The 
ability of Flink to do computations over logically 
fused time segments enables Flink to be used in 
time-series analytics in predictive maintenance. 
Since the sensor entrant data is a stream received 
by the Apache Kafka, Flink will divide it into sliding 
windows of a fixed length (e.g., 10 seconds with 2-
second overlap), as this is the necessity of the 
target ssystem in terms of timely but overlapping 
feature extraction. 
In every window W_(t ), feature vector extraction 
will be done to give a summary of the statistical 
and signal specifics of the sensor reading. These 
contain some important time-domain statistical 
parameters including: 
 Root Mean Square (RMS): Indicates the 

energy of the signal which can be used in 
determining the vibration of rotating 
machines. 

 Skewness: It is a measure of the mitigated 
distribution of data in the window or 
indicates unnatural fluctuations of the data or 
abnormal results. 

 Kurtosis: The tail of distribution is caught, 
useful when having to find spikes or impact-
like events in the signal. 

Mathematically, for a given sensor signal 
𝑥 𝑡 within window 𝑊𝑡  consisting of 𝑛 samples: 
 RMS: 

𝑅𝑀𝑆 𝑊𝑡 =  
1

𝑛
 𝑥𝑖

2

𝑛

𝑖=1

____________(1) 

 Skewness: 
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 Kurtosis: 
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𝑛
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In which the unusual character of the signal 
throughout window 𝑊𝑡 is denoted by 𝜇and 𝜎, 
respectively. 
Flink evaluates these windowed features in a 
parallelized way by making use of operator chains 
and event time semantics to always guarantee 
temporal correctness despite delays in the data. 
These feature vectors are subsequently fed onto 
the second step where they are classified into real 
time and an estimate of remaining useful live 
(RUL) is made. Besides, the dynamic scaling and 
checkpointing of the streaming pipeline by Flink 
guarantee high availability and fault tolerance, 
which play an essential role in making sure that 
there is continuous monitoring in mission-critical 
CPS applications. With the stream processing that 
is integrated at such scale, it is possible to draw 
accurate and low-latency insights that are critical 
to making proactive decisions in the case of 
predictive maintenance. 
 
4.3 Online Machine Learning Model 
Moreover, machine learning models realized using 
traditional batch training methods are inadequate 
in the context of real-time predictive health 
monitoring of Cyber-Physical Systems (CPS) since 
they fail to cope with the changes that are 
inevitable in non-stationary environments and 
concept drift. To solve this, the suggested system 
will include online learning models namely, the 
Adoptive Random Forest (ARF) and the Hoeffding 
Tree (HT) classifier, which can learn sequentially 
on the streaming data. These forms are especially 
appropriate when the data are received with time 
and the factual data distription might change with 
the time as a result of machinery wears, 
environmental variations or operations 
modifications. 
Adaptive Random Forest Adaptive Random Forest 
Adaptive Random Forest is an ensemble algorithm, 
built on streaming data, with each base learner 
consisting of Hoeffding Trees. Individually, the 
trees learn over the data stream and give their 
prediction contribution to the final prediction 
through the majority vote. It has been found that 
ARF has inbuilt change detectors in each of its 
trees which allows the model to be able to recover 
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concepts which drift by retraining of trees to 
replace the poor performing trees. This is used to 
achieve long term accuracy without having to 
retrain the model afresh. The Hoeffding Tree (or 
Very Fast Decision Tree) on the other hand, 
interprets the Hoeffding bound in the mildly 

imprecise setting to make statistically-sound 
decisions regarding node splitting with only a 
small number of examples, and thus it is well-
suited to low-latency, resource-constrained 
systems operating in edge environments. 

 

 
Figure 4. Stream Processing and Feature Extraction Workflow Using Apache Flink in CPS Maintenance 

 
In order to deal with concept drift explicitly 
architecture utilizes Adaptive Windowing 
(ADWIN) algorithm. ADWIN keeps a sliding 
window of dynamic size over the data stream and 
keeps tracking the variations in the distribution of 
error rates. In the case of a detected large 
deviation (which is associated with possible drift), 
it also causes updates of the learning model, such 
as weight tuning, substitution of rusty branches, or 
replacement of the whole learners in the ARF 
ensemble. This is because of this dynamic 
adaptation mechanism that allows the model to 
remain highly accurate even when the operating 
conditions take variation. 
The other important part of this online learning 
pipeline is real time feedback loop of edge devices. 
Since on-the-edge analysis of sensor data takes 
place and predictions are provided, real-life 
results, e.g., confirmation of the failures or even 
preventive maintenance, are recorded and passed 
on back to the model. Such a feedback loop 
improves the model to adjust itself with the 
newest and the most relevant data patterns. This 
incorporation of this continuous feedback and 
adaptation loop makes the system responsive, 
resilient, and reliable, especially in complex CPS 
environments where predictive maintenance is 
very much a prerequisite. 

5. RESULTS AND DISCUSSION 
To address the concept drift explicitly using 
Adaptive Windowing (ADWIN) algorithm is used 
as architecture. ADWIN maintains the dynamic 
sized sliding window with regard to the stream of 
data and continues monitoring the changes in the 
distribution of error rates. When large deviation is 
detected (which is related to possible drift) as well, 
it leads to updating of the learning model (like 
tuning weights, replacing rusty branches, or 
replacing the entire learners in the ARF ensemble). 
This has been occasioned by this dynamic 
adaptation mechanism where the model can be 
maintained to be highly accurate when the 
operating conditions change. 
The component of this online learning pipeline is 
real time feedback loop of edge devices which is 
the other key factor of the pipeline. As the on-the-
edge analysis of sensor data is done and 
predictions are offered, may be confirmation of the 
failures and even preventive maintenance real life 
results, an example, are noted and transferred 
back to the model. Feedback loop of this nature 
enhances the model to tune itself to the most-
relevant and latest data patters. Such integration of 
this ongoing feedback and adaptation grade causes 
the system to be sensitive, adaptive, and 
trustworthy, particularly in sophisticated CPS 
settings wherein predictive maintenance is all but 
a requirement. 
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Figure 5. Area Graph Showing Normalized Performance Comparison of Predictive Maintenance Models 

across Accuracy, Latency, and RUL Estimation 
 
At the system level, edge-based preprocessing 
combined with the Kafka-Flink pipeline led to a 
very scalable architecture and highly responsive. 
The average end-to-end response time of the 
system was 122 milliseconds and the data rate was 
7,800 messages per second with merely 61 percent 
CPU usage at the edge device. This affirms the 
applicability of the framework to be used in the 
industrial conditions in real-time. Moreover, the 
role of the concept drift detection (when the 
ADWIN algorithm was being applied) also showed 
to be necessary in supporting the accuracy as time 
passed by. In simulation run, the system was able 
to detect and react to four key concept drifts and 
average response time to drift in system was 0.9 

seconds and the correctness recovered after an 
average of 5 cycles of the sliding window 
algorithm. Such findings confirm the strength of 
the model in highly dynamic CPS settings. In 
general, the offered hybrid architecture decreased 
the mean inference lag by 37% and bandwidth 
consumption by 42%, but preserved almost 92 
percent mean classification precision, even under 
sensor noise, incomplete statistics, and concept 
drift. This shows that real-time streaming 
analytics, online learning and edge-cloud 
collaboration can be a practical and sustainable 
predictive maintenance solution in the modern 
CPS ecosystems. 

 
Table 2. Performance Comparison of Predictive Maintenance Models 

Model Accuracy 
(%) 

Precision 
(%) 

Recall 
(%) 

F1-Score 
(%) 

Latency 
(ms) 

RMSE 
(Cycles) 

Random Forest (Batch) 91.2 90.8 89.8 90.3 4120 16.7 
LSTM (Offline) 92.5 91.3 91.1 91.2 5400 – 

Hoeffding Tree + 
ADWIN 

91.7 90.1 88.6 89.3 84 – 

Adaptive Random 
Forest (Streaming) 

94.3 93.4 92.1 92.7 91 13.1 

Streaming XGBoost – – – – – 13.1 

 
7. CONCLUSION 
The current study proposes an efficient and 
extensible predictive maintenance model of Cyber-
Physical Systems (CPS), that introduces the near 
real-time big data analytics streaming, along with 
adaptive online machine learning models. Using 
real-time data pipelines constructed on Apache 
Kafka and Flink as well as the employment of 

learning models in the form of Adaptive Random 
Forest and Streaming XGBoost, the system allows 
predicting faults timely and correctly with minimal 
latency. The hybrid edge-cloud solution involves 
optimizing responsiveness as well as efficiency in 
terms of computations whereas the concept drift-
detection based on ADWIN guarantees model 
resilience in the face of the changing operational 
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conditions. The experimental findings based on the 
NASA C-MAPSS dataset, and Industry 4.0 testbed 
logs confirm that the proposed framework is more 
accurate, responsive, and able to adapt to 
unforeseen circumstances than the traditional 
batch-processing techniques. The implementation 
of the edge intelligence also reduces bandwidth 
and computing latency and, therefore, the solution 
can be deployed in the industrial environments 
requiring time-sensitive applications. In the future, 
this framework would be extended by federated 
learning to update the model on the homogeneous 
set of nodes in CPS and ultra-reliable low-latency 
communications through the use of 5G and Time-
Sensitive Networking (TSN) as well as Explainable 
AI (XAI) to improve interpretability and 
explainability of the maintenance decision. This 
innovation will open the path to smart, reliable 
and self-adaptive CPS that will be able to take care 
of themselves in a complex industrial environment. 
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