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With respect to the industrial infrastructures, Cyber-Physical Systems
(CPS) are considered as one of the fundamental units, where compute,
network, and physical processes are combined to support real-time
monitoring and decision-autonomy. With the addition of complexity and
interconnection of these systems, it is paramount to maintaining the
reliability of availability of these systems and reducing unexpected
outages. Classical forms of maintenance reactive or pre-planned are
inadequate in dynamic situations where degradation patterns of the
components evolve with time. To counter this difficulty, this paper
suggests a new system architecture that allows streaming big data
analytics allowing real-time predictive maintenance in CPS. The
framework combines distributed stream processing platforms like
Apache Kafka, and Apache Flink and adaptive machine learning models
that run at the edge and cloud levels. The system is able to identify
anomalies at an early stage, make remaining useful life (RUL) estimates
and initiate proactive maintenance practices before failure occurs, by
processing exhaustive streams of high-velocity sensor data never
ceasing in their processing. One of the most important parts of the
proposed architecture is the conduct of concept drift detection and
online learning methods, with which the model could adjust to the
evolution of system behavior without being retrained. Edge devices are
used to preprocess and perform an inference with low latency, whereas
updates in the model and long-term analytics are performed in the
cloud. The framework was tested on the NASA C-MAPSS turbofan
engine degradation dataset and actual-time data of smart
manufacturing testbed. Its performance shows that the concept at hand
is not only highly accurate (fault classification accuracy exceeding 94
percent with a latency of less than 100 milliseconds), but it also
virtually eliminates mean time to failure (MTTF) and improves overall
maintenance efficiency. Moreover, the system is robust with concept
drift and sensor noise, which is an indication that it is highly applicable
to be utilized in the Industry 4.0 environment. The value of this work to
the field is that the proposed solution of predictive maintenance of CPS
is presented as scalable, adjustable, and the solution that meets the
requirements of low latency. It will lead to the era of smarter industry
operations based on real-time intelligence.

1. INTRODUCTION

capacity are facilitated by this integration and have

Cyber-Physical Systems (CPS) Engineered systems
are the systems that combine mechanical and
physical processes using computational control
and network communication. They are the
technological basis of Industry 4.0 and allow
intelligent automation to be carried out in
manufacturing, energy, transportation and
healthcare sector. CPS provides the ability of real-
time interaction between the physical and digital
worlds by embedding sensor, actuators, and
control logic into tangible assets. Self-monitoring,
self-diagnosing, and an adaptive decision-making

a significant benefit in efficiency and productivity
of the operation. Nevertheless, this high degree of
coupling can also lead to an increased possibility of
the failure propensity (also referred to as a
cascading failure) once any faults are missed, and
this is why reliability and availability are
paramount in mission-sensitive applications of
CPS.

Risk of unplanned systems failures is one of the
other big problems with CPS, as such failures may
lead to high updates and loss of production or even
safety hazards. Conventional maintainence
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strategies including reactive maintenance (repair
after failure) and preventive maintenance (timely
scheduling) are not very effective since they either
result to overuse of resources, or failure to rectify
problem in due time. These techniques lack an
ability to properly identify minute degradation
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trends or respond to changing operating
environments in complex and data rich settings.
This causes an increasing demand of intelligent,
data driven maintenance plans to identify and
forecast system anomalies and nip them in the bud
before they grow out of hands to critical levels.
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Figure 1. Block Diagram of Predictive Maintenance Architecture in Cyber-Physical Systems Using
Streaming Big Data Analytics

With the possibility of big data analytics, Predictive
Maintenance (PdM), now has the potential to make
a significant shift as it works on the basis of the
previous experience and current sensor
information to predict the upcoming failure and
improve maintenance fixing times. Although
traditional PdMs are built around batch data
processing, this type of processing could not be
used in real-time CPS systems where large-volume
data streams continuously appear according to a
certain velocity. The proposed framework in this
paper pioneers an integrated approach to
streaming big data analytics with adaptive
machine learning to integrated distributed design
solutions with the objective of offering scalable
and real time predictive repairs. Amongst the
contributions of this work, one may: (i) a strong
CPS-oriented system with Apache Kafka and
Apache Flink at the core of low-latency stream
processing, (ii) scalable fault prediction based on
online learning models that takes into account
concept drift, and (iii) a hybrid edge-cloud
deployment model, which is responsible and can
guarantee responsiveness and efficiency in
resource allocation. All the innovations increase
the field of intelligence, real-time maintenance of
next-generation industrial system.

2. RELATED WORK

PdM has now changed to the strategy of relying on
data instead of rules and schedules that directional
data on previous issues and utilization of sensor
data on anticipated equipment malfunctions. Initial
PdM approaches mainly consisted of the use of
batch methods, in which massive amounts of
sensor data were gathered and analyzed at regular
intervals by employing off-line based statistical or
machine-learning models. Such conventional
methods, which are effective in fixed systems,
cannot cater to the latency as well as dynamic
adaptation requirements of real-time Cyber-
Physical Systems (CPS) [1].

Recent researches have considered how machine
learning (ML) and deep learning (DL) processes
can be implemented into CPS-related maintenance.
One such example is that of Lee et al. [2] which
suggested a long short-term memory (LSTM)-
based PdM model to study time-series degradation
signals of industrial equipment. The model was
also very accurate but lacked promptness in fault
detection since it relied on batch (versus real-time)
processed data via the Hadoop and Spark
technologies. Relatively, a hybrid ML model that
involved decision trees and support vector
machine implementations in an azure stream
analytics pipeline to identify early anomalies in
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manufacturing systems was proposed by Zhang et
al. [3]. This architecture was capable of providing
some degree of stream-based analysis but became
very cloud resource dependent, and also had
issues locally with latency and horizontal scaling in
an edge based focused CPS world.

The latest trend aims at counteracting these
shortcomings using real-time stream processing
frameworks. Apache Kafka has also turned out to
be a reliable distributed event streaming
infrastructure in the processing of high throughput
data ingestion. It can be used with Apache Flink or
Spark Streaming job to provide low-latency

computation over sliding windows and dynamic
model inference. Nevertheless, most current
implementations do not have native support of the
edge devices that are necessary to minimize
latency and offload the computational processes
that need to be served by the centralized cloud
resources. Moreover, the majority of models are
incapable to address the concept drift problem,
which often occurs in the changing CPS
environments, as failures may have different
signatures caused by wear, reconfiguration, or
differing operational loads.

Table 1. Comparative Summary of Existing Predictive Maintenance Approaches in CPS Environments

Author Method Tools Used Limitations

Lee et al. (2021) LSTM-based PdM Hadoop + Spark Batch-only, high latency

Zhang et al. (2022) | Hybrid ML Azure Stream Analytics | Cloud-dependent, limited
scalability

Liu et al. (2020) Online SVM Apache Storm + Kafka No drift handling, low

accuracy under load

Kim et al. (2021) CNN + RUL Estimation

TensorFlow + Edge GPU

Lacks stream processing
capability

Regardless of these innovations, there are still
some essential gaps in existing literature: (i) the
majority of PdM solutions lack the mechanism of
online learning, (ii) edge-cloud hybridization
remains unexploited or weak, and (iii) the flexible
management of concept drift is not yet generic.
The proposed study seeks to overcome these
difficulties through a real-time, streaming analytics
based CPS-specific PAM framework that is highly
resilient to faults, has the ability to orchestrate
between the edge and the cloud, and partakes in
lifelong learning.

3. System Architecture

The model of system architecture of Cyber-
Physical Systems (CPS) proposed to provide
maintenance based on prediction serves as an
extension of the real-time analytics, elasticity and
adaptability to the heterogeneous environment of
the industrial world. On the lower level, sensor
nodes are incorporated into physical assets where
we intensively measure important parameters
(temperature, vibration, current, and pressure).
These sensors produce high frequency data
streams which get transmitted to local edge
computing devices and initial preprocessing
procedures such as noise filtering, data
normalization and compression takes place. This
not just minimizes transmission overhead but it
also allows quick detection of anomaly around the

source. The resulting preprocessed data is then
consumed into a Kafka-based distributed
streaming bus serving reliable, scalable and low
latency data transport throughout the system.
Kafka pipeline posts streams into the processing
engines like Apache Flink or Spark Streaming that
apply window-based analytics, feature extraction
and anomaly scoring in approximate real-time. The
resulting understanding is represented in visual
ways on real time dashboards and alerting
systems, allowing operators to respond to trouble
proactively, before it runs out of hand. At the same
time the raw and intermediate data streams are
passed up to the cloud layer where more
computationally exhaustive operations can be
carried out, including machine learning model
training, hyperparameter tuning and federated
learning updates. The cloud is also used to
synchronize the world-wide model on the edge
devices so that a similar learning process is
compatible throughout the network. This
compound design takes advantage of the best
features of edge and cloud computing: edge
computing low-latency response and local razor-
sharp intelligence and cloud computing global
optimization and long-term storage ability. The
architecture is modular and scalable in nature and
can be applied to various CPS applications in the
manufacturing, energy, and other vital
infrastructural sectors.
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Figure 2. System Architecture for Streaming-Based Predictive Maintenance in Cyber-Physical Systems

4. METHODOLOGY

4.1 Data Acquisition and Preprocessing

The major initial step in an effective
implementation of a predictive maintenance
strategy in a Cyber-Physical Systems (CPS) must
entail  high-quality data acquisition and
preprocessing processes. The employed sensor
types in the proposed architecture will be diverse,
such as vibration, temperature, current, and
voltage and will appropriately be installed in the
industrial machinery and assets. Such sensors
constantly observe the working condition of the
mechanical and electrical elements as well as
generate rapid, multivariate time-series streams.
The vibration sensors also measure the mechanical
vibrations that signal the bearing wear or
imbalance of the shaft, the temperature as well as
current sensors indicate the thermal stresses and
currents anomalies respectively. Load tests or
degradation of insulation are identified with the

help of voltage readings. Such sensor is the basis of
health monitoring and fault detection in real time
using this heterogeneous sensor data.

To cope with this incessant flow of sensor data to
be processed and analyzed, the system uses sliding
window segmentation. The incoming time-series is
partitioned into fixed length overlapping windows
and each window captures the state of the system
on a very fine temporal scale. An example would
be the use of a 5-second window with 1-second
overlap which would allow the system to keep
temporal dependences as well as have frequent
updates to be analyzed. In every window,
statistical and frequency-domain features (root
mean square (RMS), skewness, Kkurtosis, and
spectral energy) are derived to depict the actual
state of the equipment. This makes incremental
computation, fewer memory costs and online
learning possible by providing feature vectors in
near real time.
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Figure 3.Flowchart of Sensor Data Acquisition and Preprocessing Pipeline in CPS-Based Predictive
Maintenance
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In further improving consistency and reliability of
the model inputs, each of the streams of the
features is z-score normalized. Normalization of z-
score converts the raw sensor recordings into
standardized scores on the basis of its mean and
standard deviation of a predefined window. The
effect of the differences in scale among sensors is
reduced by this normalization process and
convergence of machine learning models is
improved by centering the features around zero
and forcing unit variance. Moreover, it assists in
the stabilization of the learning process with non-
stationary operating conditions, which occurs
easily in the industrial CPS. Together, this powerful
data input stream and preprocessing flow will
enable the system to produce quality, normalized
feature representation that is needed to make

precise and timely predictive maintenance
decisions.

4.2 Stream Processing

The proposed architecture uses a stream

processing engine that real-time analyzes data
collected by sensors as Cyber-Physical Systems
(CPS) produce a lot of fast moving, non-stop data.
In particular, Apache Flink is used because it is
characterised with the best event-time processing
functionality and low-latency operations as well as
ability to operate with exactly-once semantics. The
ability of Flink to do computations over logically
fused time segments enables Flink to be used in
time-series analytics in predictive maintenance.
Since the sensor entrant data is a stream received
by the Apache Kafka, Flink will divide it into sliding
windows of a fixed length (e.g., 10 seconds with 2-
second overlap), as this is the necessity of the
target ssystem in terms of timely but overlapping
feature extraction.
In every window W_(t ), feature vector extraction
will be done to give a summary of the statistical
and signal specifics of the sensor reading. These
contain some important time-domain statistical
parameters including:

» Root Mean Square (RMS): Indicates the
energy of the signal which can be used in
determining the vibration of rotating
machines.

» Skewness: It is a measure of the mitigated
distribution of data in the window or
indicates unnatural fluctuations of the data or
abnormal results.

» Kurtosis: The tail of distribution is caught,
useful when having to find spikes or impact-
like events in the signal.

Mathematically, for a given sensor signal

x(t)within window W, consisting of n samples:
» RMS:

1
RMSW) = 2> 2 (1)
» Skewness:

Skewness(W,)
n

1 X — iyt
721( S ®
i=
» Kurtosis:

. 1\ xp —
Kurtosis(W,) = nZ( = ) 3

In which the unusual character of the signal
throughout window W, is denoted by pand o,
respectively.

Flink evaluates these windowed features in a
parallelized way by making use of operator chains
and event time semantics to always guarantee
temporal correctness despite delays in the data.
These feature vectors are subsequently fed onto
the second step where they are classified into real
time and an estimate of remaining useful live
(RUL) is made. Besides, the dynamic scaling and
checkpointing of the streaming pipeline by Flink
guarantee high availability and fault tolerance,
which play an essential role in making sure that
there is continuous monitoring in mission-critical
CPS applications. With the stream processing that
is integrated at such scale, it is possible to draw
accurate and low-latency insights that are critical
to making proactive decisions in the case of
predictive maintenance.

4.3 Online Machine Learning Model

Moreover, machine learning models realized using
traditional batch training methods are inadequate
in the context of real-time predictive health
monitoring of Cyber-Physical Systems (CPS) since
they fail to cope with the changes that are
inevitable in non-stationary environments and
concept drift. To solve this, the suggested system
will include online learning models namely, the
Adoptive Random Forest (ARF) and the Hoeffding
Tree (HT) classifier, which can learn sequentially
on the streaming data. These forms are especially
appropriate when the data are received with time
and the factual data distription might change with
the time as a result of machinery wears,
environmental variations or operations
modifications.

Adaptive Random Forest Adaptive Random Forest
Adaptive Random Forest is an ensemble algorithm,
built on streaming data, with each base learner
consisting of Hoeffding Trees. Individually, the
trees learn over the data stream and give their
prediction contribution to the final prediction
through the majority vote. It has been found that
ARF has inbuilt change detectors in each of its
trees which allows the model to be able to recover
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concepts which drift by retraining of trees to
replace the poor performing trees. This is used to
achieve long term accuracy without having to
retrain the model afresh. The Hoeffding Tree (or
Very Fast Decision Tree) on the other hand,

imprecise setting to make statistically-sound
decisions regarding node splitting with only a
small number of examples, and thus it is well-
suited to low-latency, resource-constrained
systems operating in edge environments.

interprets the Hoeffding bound in the mildly
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Figure 4. Stream Processing and Feature Extraction Workflow Using Apache Flink in CPS Maintenance

In order to deal with concept drift explicitly
architecture  utilizes  Adaptive = Windowing
(ADWIN) algorithm. ADWIN keeps a sliding
window of dynamic size over the data stream and
keeps tracking the variations in the distribution of
error rates. In the case of a detected large
deviation (which is associated with possible drift),
it also causes updates of the learning model, such
as weight tuning, substitution of rusty branches, or
replacement of the whole learners in the ARF
ensemble. This is because of this dynamic
adaptation mechanism that allows the model to
remain highly accurate even when the operating
conditions take variation.

The other important part of this online learning
pipeline is real time feedback loop of edge devices.
Since on-the-edge analysis of sensor data takes
place and predictions are provided, real-life
results, e.g., confirmation of the failures or even
preventive maintenance, are recorded and passed
on back to the model. Such a feedback loop
improves the model to adjust itself with the
newest and the most relevant data patterns. This
incorporation of this continuous feedback and
adaptation loop makes the system responsive,
resilient, and reliable, especially in complex CPS
environments where predictive maintenance is
very much a prerequisite.

5. RESULTS AND DISCUSSION

To address the concept drift explicitly using
Adaptive Windowing (ADWIN) algorithm is used
as architecture. ADWIN maintains the dynamic
sized sliding window with regard to the stream of
data and continues monitoring the changes in the
distribution of error rates. When large deviation is
detected (which is related to possible drift) as well,
it leads to updating of the learning model (like
tuning weights, replacing rusty branches, or
replacing the entire learners in the ARF ensemble).
This has been occasioned by this dynamic
adaptation mechanism where the model can be
maintained to be highly accurate when the
operating conditions change.

The component of this online learning pipeline is
real time feedback loop of edge devices which is
the other key factor of the pipeline. As the on-the-
edge analysis of sensor data is done and
predictions are offered, may be confirmation of the
failures and even preventive maintenance real life
results, an example, are noted and transferred
back to the model. Feedback loop of this nature
enhances the model to tune itself to the most-
relevant and latest data patters. Such integration of
this ongoing feedback and adaptation grade causes
the system to be sensitive, adaptive, and
trustworthy, particularly in sophisticated CPS
settings wherein predictive maintenance is all but
arequirement.
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At the system level, edge-based preprocessing
combined with the Kafka-Flink pipeline led to a
very scalable architecture and highly responsive.
The average end-to-end response time of the
system was 122 milliseconds and the data rate was
7,800 messages per second with merely 61 percent
CPU usage at the edge device. This affirms the
applicability of the framework to be used in the
industrial conditions in real-time. Moreover, the
role of the concept drift detection (when the
ADWIN algorithm was being applied) also showed
to be necessary in supporting the accuracy as time
passed by. In simulation run, the system was able
to detect and react to four key concept drifts and
average response time to drift in system was 0.9

seconds and the correctness recovered after an
average of 5 cycles of the sliding window
algorithm. Such findings confirm the strength of
the model in highly dynamic CPS settings. In
general, the offered hybrid architecture decreased
the mean inference lag by 37% and bandwidth
consumption by 42%, but preserved almost 92
percent mean classification precision, even under
sensor noise, incomplete statistics, and concept
drift. This shows that real-time streaming
analytics, online learning and edge-cloud
collaboration can be a practical and sustainable
predictive maintenance solution in the modern
CPS ecosystems.

Table 2. Performance Comparison of Predictive Maintenance Models

Model Accuracy Precision Recall F1-Score | Latency RMSE
(%) (%) (%) (%) (ms) (Cycles)

Random Forest (Batch) | 91.2 90.8 89.8 90.3 4120 16.7

LSTM (Offline) 92.5 91.3 91.1 91.2 5400 -

Hoeffding  Tree + | 91.7 90.1 88.6 89.3 84 =

ADWIN

Adaptive Random | 94.3 93.4 92.1 92.7 91 13.1

Forest (Streaming)

Streaming XGBoost - - - - - 13.1

7. CONCLUSION

The current study proposes an efficient and
extensible predictive maintenance model of Cyber-
Physical Systems (CPS), that introduces the near
real-time big data analytics streaming, along with
adaptive online machine learning models. Using
real-time data pipelines constructed on Apache
Kafka and Flink as well as the employment of

learning models in the form of Adaptive Random
Forest and Streaming XGBoost, the system allows
predicting faults timely and correctly with minimal
latency. The hybrid edge-cloud solution involves
optimizing responsiveness as well as efficiency in
terms of computations whereas the concept drift-
detection based on ADWIN guarantees model
resilience in the face of the changing operational

Electronics, Communications, and Computing Summit | Jan - Mar 2025 86




Pushplata Patel et al / Predictive Maintenance in Cyber-Physical Systems Using Streaming Big Data
Analytics

conditions. The experimental findings based on the
NASA C-MAPSS dataset, and Industry 4.0 testbed
logs confirm that the proposed framework is more
accurate, responsive, and able to adapt to
unforeseen circumstances than the traditional
batch-processing techniques. The implementation
of the edge intelligence also reduces bandwidth
and computing latency and, therefore, the solution
can be deployed in the industrial environments
requiring time-sensitive applications. In the future,
this framework would be extended by federated
learning to update the model on the homogeneous
set of nodes in CPS and ultra-reliable low-latency
communications through the use of 5G and Time-
Sensitive Networking (TSN) as well as Explainable
Al (XAI) to improve interpretability and
explainability of the maintenance decision. This
innovation will open the path to smart, reliable
and self-adaptive CPS that will be able to take care
of themselves in a complex industrial environment.
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