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The exponential growth of intelligent edge devices in use in applications
like autonomous navigation, real-time surveillance and intelligent
robotics is driving the need to energy efficient embedded vision systems
with the capability to process complex cognitive tasks in a power-
sensitive and latency-sensitive environment. In this paper, a new
architecture of neuromorphic processor specifically tuned towards
ultra-low-power embedded vision applications is as presented. Based
on how the human brain is efficient in sensory processing, the proposed
processor uses the proposed processor uses event-driven spiking
neural networks (SNNs) and in-memory computing (IMC) paradigm to
reduce data movement and power consumption. Architecturally, this
focuses on the assembly of digital leaky integrate and fire (LIF) neurons
into a programmable processing element (PE) network, with a PE
comprising a local memory and computation to serve asynchronous,
spike-based, processing. Also, the processor also includes resistive RAM
(ReRAM)-based crossbar arrays, allowing analog in-memory multiply-
accumulate (MAC) operations and decreasing the energy expenditure of
older von Neumann architectures significantly. The custom compiler
framework implements a temporally encoded visual stream as created
by event-based sensors, e.g. Dynamic Vision Sensors (DVS), to the
Neuromorphic hardware, with latency-based scheduling and dynamic
spike routing. Specifically to test the feasibility of the proposed design,
large-scale simulations and FPGA-based experiments with real-scale
vision benchmarks were performed, such as MNIST-DVS, CIFAR10-DVS
and N-MNIST. Since the power of the processor is lowered up to 4 times
and the inference latency is 2.5 times smaller than the traditional edge
Al platforms (Google Edge TPU and Intel Loihi 2), our experimental
results clearly demonstrate that the processor offers up to 2.5X lower
energy consumption, in addition to lower inference latency and
competitive classification accuracy. Results indicate a promising
potential of integrating biologically inspired neural architecture and
novel memory technologies to design scalable low-power vision
processors to support Al at the edge. This work forms a baseline of
future work in adaptive neuromorphic systems and integration with
neuromorphic sensors that can facilitate end-to-end real-time
perception with ultra-low energy footprints in large-scale distributed
embedded applications.

1. INTRODUCTION

solutions to run the traditional approaches

The prospect of artificial intelligence (AI) and
embedded systems has led to the initiation of a
paradigm shift in the world of machine perception
and interaction to the real world. Given the
growing adoption of edge computing to diverse
fields of endeavor, including autonomous vehicles,
surveillance  systems, wearable electronics,
industrial inspection and assistive robotics, there
is an urgent demand to demonstrate practical
routes to hardware realizations of real-time
intelligent visual processing, within extreme
energy and computational budgets. The typical

demand a lot of power consumption, memory
bandwidth, and lack scaling capabilities in real-
time, which makes them unfit to use on resource-
limited edge devices.

The gap between the original character of
traditional deep learning models and the needs of
embedded vision systems sit at the core of the
issue. CNNs read the visual information in dense
frames at a predetermined speed regardless of the
behavior of the scene, which results in
unnecessary calculation and poor utilization of
energy. Moreover, these architectures also feature
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a von Neumann model, implying that the memory
and computations are separated, thus causing a
memory wall that makes the performance low and
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Figure 1. Conceptual Overview of Neuromorphic Processing for Embedded Vision Applications

In order to mitigate such problems, this paper
recommends a  bio-inspired neuromorphic
processor which is based on the
structure/function of human brains; it employs the
spiking neural networks (SNNs) and event-driven
computational practices. As opposed to the classic
types of systems based on frames, SNN works on
sparse, asynchronous spikes, and its processing is
ultra-low-power and low-latency. In this proposed
architecture, SNN models will be combined with
in-memory computing (IMC) approaches, in which
the computation is performed closely or in
memory devices themselves, such as resistive RAM
(ReRAM). Compared to the off-the-shelf
architecture, SNN models with in-memory
computing will greatly minimize data transmission
and power consumption.

This work presents a processor architecture that is
optimized to handle embedded vision and shows
its efficacy by using real world benchmarks by
adopting a cross-layer co-design approach. The
given system is a promising way toward the
introduction of intelligent, energy-efficient vision
processing at the extreme edge where power
budgets are limited, and responsiveness is of
paramount importance.

2. RELATED WORK

2.1 Paradigm of neuromorphic computing
Neuromorphic computing seeks to implement the
biological brain by mimicking its computation
power as organized and operated by adopting a
special arrangement of hardware to do so. Unlike
in the von Neumann architecture (the separation
of the memory unit and the processing unit
causing too much data movement) neuromorphic

systems feature a  distributed memory-
computation model, which decreases latency and
power usage [1]. Data in these systems is encoded
as discrete events or spikes and only causes
computation when the information exists, as found
in biological neurons in their sparsity and
parallelism.

Traditional artificial neural networks (ANNs), such
as convolutional neural networks (CNNs), need
dense matrix multiplications as well as
synchronous operations with all layers, which
needs extensive computation resources and
power. By comparison, Spiking Neural Networks
(SNNSs) represent an asynchronous input stream of
events, thus making SNNs capable of sparse and
event-based computing. The nature of SNNs best
qualifies edge Al applications in which energy
efficiency, inference latency is important [2].

2.2. SNNs: Spiking Neural Networks

The third generation of neural networks is the
SNNs which simulates the dynamics of biological
neurons in time. Common models of spiking are
the Leaky Integrate-and-Fire (LIF) model, which
models leakage of membrane potential over time,
Izhikevich model, a computationally efficient
spiking which is also biologically plausible, and
HodgkinHuxley model, which provides fine-
grained modelling of ionic channels at the cost of
being computationally demanding [3]. The LIF
model, which is also quite simple and suitable to
hardware implementation, is an example of these.
Training the SNNs is non-trivial because of the
non-differentiable activation functions. Several
methods have been suggested such as spike-
timing-dependent plasticity (STDP) to learn
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unsupervised and surrogate gradient descent to
perform supervised neural network tasks [4].

2.3 Processors with Embedded vision

A number of hardware platforms were created to
speed inference of deep learning at the edge. The
Edge TPU of Google runs quantized CNN inference
up to heights of 4 TOPS/W but does not support
sparse and event-based processing [5]. Jetson
Nano (NVIDIA) offers a higher level of GPU-based
acceleration that 1is, however, much less
programmable (>5W under load). Intel Loihi 2
chip is also a commendable neuromorphic
solution, with thousands of spiking neurons and
synapses have on-chip learning capabilities.
Nonetheless, Loihi is still a power-hungry chip
even at realistic loads, and needs complicated
toolchains [6].

2.4 Current Solution Limits

Although this kind of solution has been made,
there are still not enough solutions satisfying the
requirements of power and performance of an
embedded vision system in real time. CNN-based
accelerators have a large memory bandwidth and
lack of efficiency as dense processing of the inputs
is frame-based. Limitation All these limitations are
handled to a certain degree by event-based
ironsuch as Loihi, which nevertheless continue to
be limited by  scalability, = complicated
programming models and the absence of
integration with neuromorphic sensors [7].

It is essential that a processor architecture that
integrates both the sparseness and event-driven
characteristics of SNNs with in-memory compute
with emerging memory technologies (e.g. ReRAM
and MRAM) is highly desirable. Such architectures
have the potential of decreasing energy
consumption and latency and enabling real-time
embedded vision applications on low-power edge
devices [8], [9]-

3. METHODOLOGY

The given methodology will achieve architectural
innovation combined with algorithmic co-design
that will produce a processor to address
embedded vision tasks with highly constrained
power and latency requirements. These steps are:

3.1 Cross-Layer Co-Design

An important method in development of
neuromorphic processors is cross-layer co-design
where computation model, learning algorithm,
hardware system architecture and application-
level needs are intimately linked to reach optimal
performance with quite strict power, latency and
area constraints. In contrast to traditional Al
accelerators that consider algorithm and hardware
more as distinct layers, neuromorphic computing

systems need to be optimized synergistically
across the neural abstraction stack in order to take
advantage of the biological realism and the
sparsity and event-driven characteristics of
spiking neural network (SNNs).
To do so in the proposed architecture, cross-layer
co-design has been used to match structure and
timing behavior of spiking neurons to hardware-
level units including processing element (PE),
memory access patterns, and spike routing
strategies. The basic compute unit of the processor
is based on digitally implemented Leaky Integrate
and-Fire (LIF) type of model of the neurons.
Mathematically the LIF neuron can be defined by:
dv(t)

Tn gy = =V () + RI(t)
With V (t)membrane potential, I(t)input current, R
membrane resistance and 7,,membrane time
constant. A spike is released by the neurons when
V(t)passes some thresholdV,y. At this state, the
membrane potential of the neuron is reset.
In order to allow hardware implementation, this
continuous-time system is discretized and
implemented with fixed-point arithmetic bit-
widths, which trade freedom of choice in the name
of area-efficiency. The proposed architecture is
dynamic-power and arithmetic logic-friendly
because of using flexible-point units instead of
floating-point units, which makes it suitable to
deploy the architectural style in power-
constrained systems like edge devices.
At the architectural scale every PE can simulate a
population of LIF neurons and synaptic weights
and the neuron state variables are stored in local
SRAM buffers. These neurons are designed to be
asynchronous, and refreshed only after being
supplied with input spikes, greatly cutting down
on redundant calculation. Spike-driven
implementation has the capacity of dynamically
power gating idle PEs at very high energy
efficiency, and reduced switching activity.
Moreover, the co-design deals with the algorithm-
aware hardware scheduling where the SNN layers
are scheduled on hardware resources according to
temporal firing characteristics and connectivity
sparsity. As an example, being highly or not active,
layers have distinct consequences: less compute
resource or low-power subcores are allotted to
layers with lower spiking activity, whereas the
next spiking activity is pipelined and runs in
parallel.
Such a closely coupled co-design strategy permits
the neuromorphic processor to efficiently wring
temporal sparsity (driven by event-timed firing)
and spatial sparsity (caused by pruned or sparse
connectivity matrices) of the SNN model. The
proposed system therefore outperforms
conventional CNN accelerator in latency, power
efficiency and throughput of computation
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especially with real-time embedded vision tasks

whose dynamics are spatiotemporal.
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Figure 2. Cross-Layer Co-Design Architecture for Neuromorphic Processor

3.2 Neuromorphic Core and PE Mapping

The core of the proposed architecture of
neuromorphic processor is a scalable Processing
Elements (PEs) array of digital-spiking neurons
whose specific model is Leaky Integrate-and-Fire
(LIF). Such PEs can work independently, with local
memory and processing, and allow event-based
computation at low power specifically suited to
embedded vision applications.

Structure of a Processing Element (PE)

The proposed neuromorphic architecture has a
Processing Element (PE) which is a self-contained
computational element that is optimized to run
efficient spiking neural networks (SNN). It has a
neuron core array that supports an order of
magnitude more Leaky Integrate-and-Fire (LIF)
neurons running in parallel on fixed-point
arithmetic, allowing both low power and high
throughput inference. Each PE contains special
Static Random-Access Memory (SRAM)
subsystems that locally cache important state
variables of the neurons (e.g. membrane
potentials, thresholds and refractory counters) and
also fat neural connections (e.g. synaptic weight)
to avoid expensive access to off chip memory. An
asynchronous spike communication is performed
by means of a lightweight spike scheduler and
router, that coordinates and synchronizes input
and output spikes with minimal overhead. Further,
neuron update rules, synaptic integration and
firing threshold logic are controlled by a local
controller with no need of global -clock
synchronization. This design is asynchronous
(fully) and event-based and, besides cutting greatly
the switching activity and dynamic power
dissipation. Most computations and memory

access are carried out locally, providing significant
energy efficiency and low inference latency gains,
making the architecture appropriate to those use-
cases that require real-time, ultra-low-power
embedded vision applications with intuitive
semantics.

Asynchronous and Event-Driven Processing
Unlike the frame-based computation with the
traditional vision systems, the proposed PEs will
consider event-driven computation such that only
when spikes are received will the computation
take place. This inherently minimizes extraneous
switching (activity) and enables dynamic power
gating of idle neurons / subunits in the PE. Further,
system can be scaled in terms of the amount of
computation need as a result of activity in the
scene, an important feature in embedded systems
with widely varying input and activity (e.g., low-
motion scenes produce few spikes).

Hierarchical Interconnect and Spike Routing

To allow interaction among the neuron
populations placed on several Processing Elements
(PEs), the architecture proposed implements a
hierarchical interconnect network that utilizes
specifically event-based spike transmission. Within
this network is a local interconnect to provide low
latency and fast communication between neurons
within the same core. In an inter-PE connection a
neighbourhood router is involved to support fast
spike communication between any pair of
adjoining PEs, an essential feature to process
spatially correlated visual information. Globally, an
asynchronous bus or mesh provides long-range
spike transmission among PEs that are separated,
or among spiking layers of the spiking neural
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network (SNN) processing hierarchy. The whole
interconnect is asynchronous and sends spike
packets containing source and destination neuron
ID, as well as optional metadata (e.g. spike
timestamps). This is an event-based
communication model which does not require
global clock synchronization meaning all neuron
clusters and parallel and pipelined computations
can be carried out. Moreover, special schemes like
spike compression and priority routing are made
for low communication overhead and avoiding
network congestion especially at the time of high
spike activity. The hierarchical asynchronous
approach to interconnect in the processor
guarantees scalable, low-power, and real-time
communication in-between the neural
interconnections.

Mapping SNN Layers to PEs

A spike aware compiler neural network (SNN)
mapping the layers and neurons to Processing
Elements (PEs) strives to minimize energy and
balance load by partitioning the network in a
knowledgeable way. This compiler takes into
account main aspects like patterns of connectivity
in terms of dividing into convolutional and fully
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communication between PEs. The low spike layers
of the vision are assigned high-capacity PEs with
more compute and memory when early-stage
vision is detected to be spiky because of early
event-driven sensors such as Dynamic Vision
Sensors (DVS). These in contrast are assigned the
deeper layers which can be sparsely fired thus
reducing energy consumption at the cost of
preserving throughput since they are implemented
by the lightweight, low-power PEs. This tiered,
activity-dependent allocation allows hardware to
be optimally utilised, minimise communication
latencies, and avoid bottlenecks of performance in
areas of high neural activity. When these mapping
approaches are integrated with closely synaptic
LIF neurons, local memory capability, and an
asynchronous hierarchical interconnect the
neuromorphic core can perform real-time, low-
latency computations with much less power
consumption when compared to the more typical
deep learning accelerators using frames. That
makes it an ideal design in terms of embedded
vision applications where energy consumption and
low responsiveness time is a critical factor.
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Figure 3. Hierarchical Neuromorphic Core Architecture with PE Mapping Strategy

3.3 In-Memory Computing with ReRAM

In order to increase energy efficiency and
overcome the computational cost of moving the
data, the proposed architecture is a neuromorphic
model with Resistive Random-Access Memory
(ReRAM) crossbar arrays, that emulates in-
memory computing (IMC). The traditional
architectures are plagued with the so-called
memory wall wherein there is a lot of data
movements that occur between the memory and
the processing subunits which annoy the energy
consumption and latency. In contrast, in-memory

computing supports Multiply-Accumulate (MAC)
operations, which are central computations of
neural computation, to be performed in the
memory cell itself, obviating more weight and
activation shuttling to and fro.

In the presented design, the ReRAM crossbars will
be dual-purpose, as the memory to store the
synaptic weight and as the computing elements
where analog vector-matrix multiplication (VMM)
can be done. Applying an input voltage vector to
the wordlines of the crossbar, to activate the spike-
based information with a series of Ohm-law-driven
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currents, will naturally (by Ohm and Kirchhoff)
sum as analog MACs along the bitlines. In this
process, the sum of inputs with their relative
weights is efficiently and massively parallel
computed, with the resultant current being the
aggregated post-synaptic potential.

Different synaptic weight values are stored as the
conductance levels in each ReRAM cell and may be
addressed by tuning the gates with high accuracy
by pulse-width (amplitude) modulation. This is
converted to digital using local Analog-to-Digital
Converters (ADCs), thus allowing reliable interface
to downstream digital LIF neurons. It not only can
cut power per operation by a factor of ten (i.e.
energy-per-operation), the hybrid analog-digital

paradigm can increase compute density (i.e.
compute per memory access) by four orders of
magnitude to thousands of MAC operations in a
memory access cycle.

Moreover, the ReRAM-based IMC units are directly
connected with the Processing Elements (PEs),
thus, maintaining locality in the computation, and
enabling asynchronous and spike-based updates.
Such an architectural symbiosis between spiking
computation and in-memory computation makes
the system an ultra-efficient embedded vision
processor where most important is its capability to
process large-scale sensory inputs under extreme
power constraints.
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Figure 4. In-Memory Computing Using ReRAM Crossbar for Spike-Based MAC Operations

4. Vision Application Workloads

A set of event-based vision datasets and
benchmarks were used to measure the real-world
feasibility and effectiveness of the proposed
neuromorphic processor: those benchmarks were
selected to resemble low-power, real-time
perception systems. The main sets of data are the
MNIST-DVS, CIFAR-10-DVS, and N-MNIST, which
employs the recorded images on a dynamic vision
sensor (DVS) of a traditional set of images. The
main characteristic of the dataset is that it contains
spatiotemporal spike streams, but not frames, thus
being rich on the temporal information, which is
highly suitable to the operating paradigm of
spiking neural networks (SNNs). MNIST-DVS and
N-MNIST provide digit-recognition tasks with
different motion patterns and noise levels, but
CIFAR-10-DVS contains more varieties of object
classes, which is more suitable to the judgment of
the system generalizability. The processor was
further applied to the real-time object detection
using raw input with DVS cameras which allows its
evaluation under live and uncontrolled lights and

motion scenarios. The significance of these tests
was the system capability of managing
asynchronous, sparse and high-speed input data
common to edge vision applications robotic,
surveillance, and human-machine interface.

A properly constructed mapping and scheduling
network framework also improved the
performance of the SNN workloads ran on the
processor. The input data were temporally coded
in a first step, i.e, in rate coding (encoding the
intensity with the number of spikes per second), in
temporal contrast coding (detecting pixel changes
with spikes). The SNNs were both trained using
unsupervised learning mechanisms, such as the
Spike-Timing Dependent Plasticity (STDP), and
supervised training through the surrogate gradient
descent, which can learnsurrogates to estimate
gradients to backpropagate training in spiking
networks. The network compilation was
performed whenever the networks were trained
with a graph-based compiler software that
assigned each network layers or sets of neurons to
designated Processing Elements (PEs) with respect
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to interconnection and firing activity. This strategy
of mapping or allocation of layers to PE took into
consideration communication burden, memory,
and neuron activities to geared towards optimizing
resources in terms of their use. In addition, the
scheduling policy used by the compiler to route the
spike events and to process them pipeline-fashion
allowed minimizing the latency in the result and
avoided the congestions in the interconnect. It is

Input Sources

Temporal Encoding

the combined benefit of optimized network
encoding and biologically inspired learning
coupled with intelligent compiler-based schedule
that has allowed the system to effectively perform
robust embedded vision inference that is
minimally power and delay incurring whilst
provising a scalable high-performance research
platform within the field of neuromorphic
computing.
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Figure 5. Event-Based Vision Dataflow and Network Mapping Framework

5. RESULTS AND DISCUSSION

5.1 Experimental Setup

In order to strictly access the performance and
hardware viability of the suggested neuromorphic
processor architecture, a novel hybrid simulation-
prototyping strategy has been adopted. A SystemC-
based cycle-accurate simulator was used to run
architectural-level simulations that are modeled to
reflect the behavior of the spiking neural network
(SNN) core, in-memory computing units and
interconnect subsystems under event-driven
workloads. The simulator is based on the support
of asynchronous spikes-based data flow with
energy modeling of every processing element (PE)
to allow detailed profiling of the Ilatency,
throughput, and power consumed. The
neuromorphic processor was synthesized and
placed on a Xilinx ZCU102 FPGA design platform in
order to validate the hardware design, and take
advantage of the available resources to simulate a
running design composed of the spiking cores,
ReRAM-based MAC units (which are approximated
using LUTs and BRAM) as well as spike routing
logic. The real-world event-based vision
benchmarks, e.g. MNIST-DVS, CIFAR10-DVS, and a
live object-tracking task on a DAVIS240C Dynamic
Vision Sensor were used to perform functional
testing. The DVS sensor output the asynchronous
spike occupying real-time scene dynamics which
were directly inserted in the FPGA-based

operation where the information was processed
and classified online. The arrangement made it
possible to measure system-level behaviour when
subjected to dynamic input settings, replicating
real-world embedded edge deployment settings.
Also, energy metrics were measured in the
testbench by using external power analyzers and
timing analysis tools that were a part of the FPGA
development tools. The simulation plus hardware
co-evaluation method allowed a complete insight
to the performance range of the processor, which
confirmed the processor to be suitable towards
ultra-low-power, real-time embedded vision
systems.

5.2 Key Performance Metrics

The specified neuromorphic processor shows
better results in a variety of metrics compared to
such an edge artificial intelligence accelerator as
Intel Loihi 2 and Google Edge TPU. The ultra-low
operating power (25.4 milliwatts) of the processor
gives it a power consumption that is two orders of
magnitude better than Loihi 2 (85 mW) and Edge
TPU (130 mW) and it is thus very suitable in
battery-powered and  thermally-constrained
embedded vision. The event-driven mode of
execution of the architecture and the use of ReRAM
crossbars make such large reduction in dynamic
power consumptions possible. In addition to that,
the processor has a latency inference of just 3.5
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milliseconds per frame making it have the ability
to do real-time response to the vision tasks. Such a
latency is significantly lower than that of Loihi 2
(6.2 ms) and Edge TPU (8.0 ms) due to the
asynchronous processing pipeline and very
parallel spike-driven computation. Robustness of
the proposed system is further demonstrated on
the benchmark through accuracy using the
CIFAR10-DVS dataset, beating both Loihi 2
(87.5%) and Edge TPU (85.2%) despite operating
on severely limited power and computational
budgets. But the most important aspect is that its
architecture shows a tremendous energy elasticity,
that is, 88 microjoules per inference, whereas Loihi
2 consumes 340 14 and Edge TPU an enormous
1040 14 of energy. These outcomes all contribute
to the fact that biologically inspired SNN
computation, temporal sparsity, and in-memory
MAC operations offer a convincing balance in
accuracy, latency, and energy costs: making the
proposed system a state-of-the-art solution to the
next generation low power embedded vision
processing.

5.3 Discussion

The results of the evaluation show the efficacy of
the proposed neuromorphic processor towards a
practical trade-off of energy versus computation
performance or in agreement to the classification
accuracy of embedded vision applications.
Ostensibly, the processor can produce an energy
reduction of 3.8x Intel Loihi 2, 11.8x Google Edge
TPU, which are remarkable accomplishments. The
subsequent efficiency is widely believed to be
achieved through in-memory computing (IMC) and
ReRAM crossbars combined with event-driven

Proposed Neuromorphic
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activation which prevents both idle computations
and extraneous data movement. It is also capable
of providing high real-time responsiveness, with
an average inference latency of only 3.5 ms which
is more than sufficient to address the needs of
applications where response times are critical like
in autonomous robotics, drone navigation and
intelligent surveillance. Regarding the accuracy of
classification, the processor displays a relatively
high accuracy of 89.3 on CIFAR10-DVS, which
proves that spiking neural networks (SNNs) could
perform as well as full-precision convolutional
neural networks (CNNs), losing by a margin of only
about 4% and this is acceptable within the edge
environment under a power-limited constraint.
Another extraordinarily important factor is the
scalability of the architecture: the modular
architecture allows stacking more of the neuron
cores to support inputs with higher resolution, or
more demanding vision styles, without
proportionately consuming more power. There are
however shortcomings that come with the system.
Whereas Spike-Timing Dependent Plasticity
(STDP) had been developed to address
unsupervised learning, it was later found to be less
stable, and to achieve slower convergence, when
compared to surrogate-gradient-based ANN-to-
SNN conversion mechanisms, again underscoring
the importance of robust, and preferably less
hardware-intensive, learning algorithms in spiking
neural networks. In spite of these constraints, the
design as a whole can be seen as an interesting
solution to edge-Al services in the future,
providing an effective combination of bio-
informant efficiency, real-time capability and
scalability to handle event-based vision processing.
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Table 1. Comparative Benchmark Results for Neuromorphic Processor vs. Loihi 2 and Edge TPU
Metric Proposed Intel Loihi 2 Google Edge
Neuromorphic TPU
Processor
Power Consumption (mW) 25.4 85.0 130.0
Inference Latency (ms) 3.5 6.2 8.0
Accuracy on CIFAR10-DVS | 89.3 87.5 85.2
(%)
Energy per Inference (pJ) 88 340 1040
Relative Energy Efficiency vs | 11.8x 3.1x 1x (Baseline)
Edge TPU
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