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Farming also needs good water management to increase food
production to meet the global population needs with the minimal usage
of freshwater. The traditional irrigation method usually results in the
wastage of water and unpredictable crop results because it is performed
manually and without being environmentally sensitive. The present
paper provides a microcontroller-driven artificial intelligence (Al)-
enabled smart irrigation system that can use the Al-enabled decision
logic to deliver the water adaptively and precisely in real-time. The
system takes advantage of a blend of cheap sensors to permit constant
observation of ground moisture, temperature, humidity, and rainfall
conditions. Field data is fed to an ESP32 microcontroller at the place of
harvest where a low-end machine learning model based on the current
environmental conditions, the specific crop, and the past irrigation
standards are used to estimate the current watering needs of the crop.
Thanks to the application of Al model deployed with the help of
TensorFlow Lite for Microcontrollers, decision-making is conducted
offline at the edge of the network, significantly contributing to
uninterrupted operation with poor or even no connectivity in rural
regions. The energy-efficient solenoid valves controlled by relays are
used to realize actuation with precise application of well-regulated
water also when necessary. A testbed was used to demonstrate field
trials on lettuce and tomato crops, where the water usage was greatly
reduced up to 38 percent and stability of soil moisture was enhanced in
addition to 12 percent more crop yield compared to the traditional
timer-driven irrigation. Real-time remote monitoring, analytics, and
adaptive learning can also happen through the cloud-based logging
system through Firebase. The proposed solution is scalable, robust, and
sustainable; hence appropriate in the implementation in small and
medium-sized farms. It can discard its reliance on manual operation and
make intelligent and autonomous irrigation choices with the help of
inbuilt Al and create the ability to make intelligent choices in precision
agriculture. The study reveals the potential and advantages of coupling
microcontroller-based control systems with edge Al in agricultural
systems that will lead to inexpensive yet smart irrigation technologies
that can be replicated in different climatic and soil circumstances to
achieve food security and resource preservation.

1. INTRODUCTION

deteriorates the soil, and fails to provide maximum

One of the most urgent worldwide problems to be
solved is water shortage, which is aggravated due
to the increase of population and climatic changes
and ineffective farming systems. The sector that
uses most of the freshwater resources is the
agricultural sector, which absorbs almost 70
percent of the water extraction in the world. The
main problem in abusing water and soil erosion is
still practiced in most developing nations through
the traditional ways of irrigating crops like flood
irrigation and fixed hours monitoring, an irrigation
system that produces high water consumption,

crop growth. Such approaches are inefficient in
nature as they do not consider real time soil and
climatic circumstances, crop-water requirements
and rain fluctuations.

The recent developments of embedded systems
and wireless sensor networks enabled high-
granular and low-cost monitoring of the
environmental situation. The concept of smart
irrigation systems could be developed using
platforms delivered by microcontrollers, especially
the ones upholding Internet of Things (IoT)
capabilities. They have the capability to gather,
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analyze and act upon environmental data
autonomously and thus would make sure that the
water is supplied when and where it is required

simple rule-based inference (e.g. soil moisture
thresholds) that are not well suited to responds to
dynamic weather events, crop phenology or soil

exactly. Most established systems however use heterogeneity.
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Figure 1. Conceptual Architecture of AI-Powered Smart Irrigation System

In this study, the limitation is tackled by
introducing the element of artificial intelligence
(AD) in the process of irrigation control decision-
making. The Al type of algorithms, especially
machine learning manipulations can extract a
pattern in multi-sensor data and make sufficient
predictions based on the optimum time and
quantity of irrigation. When combined with edge-
enabled microcontrollers, these models provision
real-time, non-cloud-reliant control, without the
need of sustained internet access, thus promising
to operate in the remote and resource-limited
areas.

In this project the goal is to design, implement and
experimentally test a smart irrigation application
that combines the microcontroller based sensing
and controlling logic with Al driven decision logic.
Embedded intelligence and low-power automation
are to optimise water and enhance the health of
crops and minimise the manual input in the
system. Real-world implementation and evaluation
of the proposed system demonstrate that the
solution will be feasible in practice, and precision
irrigation using Al will be a potentially sustainable
farming system.

2. LITERATURE REVIEW

Automation in agriculture has become one of the
most researched areas considering that, it is likely
to save on water as well as enhancing crop
production. The traditional irrigation systems
largely rely on the use of manual scheduling or the
mechanical use of timers which has been proved to
lead to wastages of water or plant stress since they
are unable to adjust according to the real time

changes in the environment [1]. In response to
this, scientists proposed microcontroller based
system in conjunction with soil moisture sensors
that open irrigation channels at an pre-determined
moisture level [2]. Although effective in
eliminating manual labor, such systems are quite
reactive and cannot be adjusted to unpredictable
weather or different water demands in crops.

IoT technologies have led to more responsive and
situation aware irrigation systems. Paper like [3]
has revealed how Arduino or ESP based systems
were used to collect the data of temperature,
humidity and soil moisture sensors. These systems
frequently data to cloud, after which analytical
models or dashboards provide assistance in
decision-making. Nevertheless, the use of cloud
computation creates a delay, power usage, and
data security issue, especially in distant regions
that experience poor connectivity.

Artificial intelligence techniques have been
included in several studies to handle decision-
making. As an example, artificial neural network
(ANN) and support vector machines (SVM) have
been applied in prediction of soil moisture content
and irrigation timing prediction [4], [5]. The fuzzy
logic systems and decision trees have also been
developed because they are easy to interpret and
rule-based systems are efficient [6]. Yet, the
majority of these Al applications are cloud-based,
which cripples real-time performance and
flexibility of remote use.

New protocols (Tiny Machine Learning (TinyML))
allow installing small Al neural networks directly
on microcontrollers [7]. Zhang et al. [8] showed an
irrigation predictor pruned neural network
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implemented on an ARM Cortex-M4 by having the
network deployed to run along the edges. Equally,
[9] examined the TensorFlow Lite for
Microcontrollers to integrate crop health
observation models in low-consuming edge
devices. However, the lack of seamless integration
of Al-based decision logic of smart irrigation,
which is fully embedded, contextual, energy-
optimal and experimentally verified in real-world
environments, has still not been filled.

Thus, the research gap that the paper seeks to fill is
to propose a complete system in which Al logic can
be processed within a microcontroller and such an
autonomous adaptive irrigation control is not
dependent on additional computing resources.

3. System Architecture

The proposed smart irrigation system is designed
as a modular and scalable architecture that
integrates sensing, control, and actuation
components into a unified framework. It leverages
embedded intelligence to make autonomous
irrigation  decisions based on real-time
environmental data. The system is composed of
three major subsystems:

3.1 Sensing Unit

In the proposed smart irrigation system, the
sensing unit will aim at continuously measuring
some of the main environmental parameters which
may have a direct effect on the crop water
requirements. It consists of capacitive soil
moisture sensor that calculates volumetric water
content (VWC) in the soil and offers analog output,
which is also calibrated to reflect the levels of soil
moisture. Moreover, ambient temperature and
relative humidity data is acquired by a DHT11
digital sensor to enable the determination of
evapotranspiration, which leads to accurate
estimation of irrigation decisions to be undertaken
by the Al model. An analog rain sensor of the
surface kind is connected to calculate the natural
precipitation to avoid unintended rain and wasting
of water resources since the precipitation is
calculated and can be utilized to avoid watering.
These sensors are well-positioned in the plants,
the region just below the crops to take
representative environmental situation. The
sensors provide information that is taken by the
system at a predetermined time, usually every 10-
15 minutes, and transmitted to the microcontroller
where they are processed and intelligent decision
making is obtained.
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Figure 2. Field Deployment and Data Flow of the Sensing Unit

3.2 Control Unit

Implementation The control logic of the smart
irrigation system was registered by means of the
ESP32 microcontroller, a low-power and dual-core
embedded device that provides built in Wi-Fi and
Bluetooth functionality. This microcontroller
performs the work of central processing unit
which gets the real time data and converts the
analog data to digital data by all connected
sensors. It operates an embedded model of
artificial intelligence (Al) whose development and
optimization was conducted via TensorFlow Lite

for Microcontrollers (TFLM) which can interpret
the environmental input and determine whether
irrigation is required or not. The Al model makes it
possible to make fast and efficient decisions on the
device with the minimum latency and without the
option of accessing the internet, which marks the
system as very deployable in rural/remote
locations. Furthermore, the microcontroller also
has safety features like enforcing the override of
irrigation signals in case of rain and enduring
stability by thresholds verification. The ESP32 is
also adjusted to work with an active Firebase cloud
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server to synchronize operational data to enable
remote monitoring, analysis of historical data, and
updating of the model when connection is present.

This edge-Al solution guarantees smart and
autonomous work and scaling and sustainable
performance.

Table 1. Key Functional Capabilities of ESP32-Based Control Unit

Feature Description
Core Architecture | Dual-core TensilicaXtensa LX6
Al Capability TensorFlow Lite for Microcontrollers
Sensor Interface ADC + GPIO for digital and analog inputs
Communication Wi-Fi, Bluetooth, optional Firebase cloud sync
Decision Logic On-device Al model (Irrigation classification)
Power Efficiency | Ultra-low-power sleep modes, ideal for rural areas

3.3 Actuation Unit

The smart irrigation system facilitates the physical
delivery of water to the crops by means of an
actuation unit that is in charge of executing the
decision of the microcontroller. This unit is
composed of 12V DC solenoid valves mainly
composed of electrically controlled solid, and they
are linked to the irrigation pipeline. These valves
act as manually controlling gates that open or close
letting the water pass into certain crop areas. In
order to streamline the process of actuation, a
relay driver module is utilised to translate the low
voltage controlling input of ESP32 microcontroller
into a higher current requirement of the solenoid

valves. This configuration provides safe electrical
isolation, as well as, consistent switching. In the
event that the built-in Al model determines that
irrigation is required, the ESP32 uses a control
signal to excite the correct relay, resulting in the
valve being enabled and water being released
through it within the desired amount of time,
which is usually 10 to 20 minutes, but varies with
each crop type and the state of the soil moisture.
Whereby at the end of the irrigation cycle the
system will automatically shut off the valve and
restart itself back to automatic monitoring of the
environment to ensure that there will be efficient
and an automatic irrigation process.
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Figure 3. Actuation Unit Schematic for Automated Irrigation Control

4. METHODOLOGY

4.1 Data Acquisition and Preprocessing

One of the crucial parts of the decision making
process in the smart irrigation system is the
process of constant and precise recording of the
environmental data. The solution engages a
distributed sensing design in which a variety of
environmental variables are simultaneously
observed in real-time through sensor network
integration with an ESP32 microcontroller. These
major parameters are soil moisture, temperature,
humidity and rain with optional solar radiation.

The component used to measure soil moisture is a
capacitive soil moisture sensor and it has better
reliability and longer lifetime than resistive
probes. Raw readings on the analog voltage output
of the sensor are compensated by measures of
known volumetric water content (VWC) levels so
that raw data can be converted to meaningful
moisture percentages. This reading indicates how
much water is available in the root zone at the
current moment and it is an essential element in
establishing whether watering is necessary.
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The temperature and the relative humidity are
checked with a DHT11 digital sensor; it gives
discrete values of temperature (in Celsius) and
relative  humidity (in percentages). These
parameters affect water loss through transpiration
and evaporation in the plants and in the soil
respectively, and they are, therefore, crucial in
determining the total water loss to
evapotranspiration. The presence of the readings
in the Al model will result in the augmentation of
the Al decision-making capabilities with respect to
irrigation done using context awareness.

The detection of rainfall is done through a rain
sensor and this rain sensor is of a surface type of
analog sensitivity, which identifies the presence of
rainfall. Irrigation stops or is postponed as soon as
rainfall is observed despite the other
circumstances in order to avoid excessive watering
and facilitate the water conservation.

Solar radiation (optional) Sunlight intensity is a
key parameter that affects the rate of
evapotranspiration, and in more sophisticated
installations of the smart irrigation system, it can
be estimated by measuring the intensity of
sunlight using a Light Dependent Resistor (LDR),
which is the cheap OEM estimate of solar radiation
presence. Use of the LDR data can also be
especially useful in areas where the amount of
sunlight has a lot of variation perhaps due to
weather conditions and as such real time
measurement of sunlight can be used to a great
effect in timing irrigation. All the sensor data, such
as the soil moisture, temperature, humidity,
rainfall condition, and optional LDR are measured

Stage 1: Data Acquisition
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at regular intervals, usually 10 or 15 minutes apart
and each measurement is time-stamped so that a
fine-grained tracking and analysis of the respective
values can be done. Before feeding the data in the
embedded machine learning model, preprocessing
pipeline is used to guarantee quality and
consistency of the data.

These may involve interpolation or dropping into
missing data, smoothing through a moving average
or a median filter which may remove sensor noise,
and featurization by normalizing the different
sensor outputs to a comparable range in numbers
so that they may be utilized in machine learning
inference. The resulting clean data set is
subsequently annotated based on the expert
agronomic advice, whether or not, irrigation is
needed, under given environmental circumstances
and crop specific circumstances. Samples are
either labeled with values of the set Irrigation
Required or Irrigation Not Required therefore
constituting a supervision learning ground truth.
This organized data serves as the basis of training,
validation, and fine-tuning the Al model that is
applied to the microcontroller and can repeat the
judgment of the expert in real-time with an
acceptable level of accuracy and use of minimal
resources.

This strong data acquisition and preprocessing
system is the first step of smart scheduling of
irrigation that will allow the system to react
manifold upon the dynamic change in the
environment and save on the water consumption
leading to the higher harvest growth rate.
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Figure 4. Data Acquisition and Preprocessing Workflow for Al-Based Irrigation
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4.2 Model Development and Training

The smart irrigation system suggested here has all
its core intelligence residing in a lightweight
machine learning model, namely a Random Forest
Classifier (RFC), operating on a microcontroller in
direct fashion to make real-time decisions. The
model categorizes the necessity of irrigation on
real-time inputs of the environmental conditions
so that it can operate independently without use of
cloud infrastructure. The reason RFC was selected
was because of its resistance to overfitting, the
impossibility to deal with heterogeneous or non-
linear data, and the possibility to run it on edges
with limited resources. The training model used a
combination of past-historical and real-time
sensor data with agronomic decisions markings of
a non-contemporaneous nature. The most
important input characteristics were soil moisture
(percent VWC), ambient temperature (value in
degrees Celsius), relative humidity (percent),
binary rain status (on/off), coded crop type, and
time of day-each of these are very important
factors of water requirements by plants. The RFC
was set so that it would have 100 estimators and
that the tree depth will not exceed 10 to balance
between the model complexity and the predictive
capabilities. The trained model had reached a
classification measurement of 92.4%, a precision
measurement of 94.1% of the category of
Irrigation Required, thus making sure that water

resources are properly planned and deduced with
agronomical need.

In an effort to ensure that the model can deploy
into low-power edge devices, it was optimized
with the TensorFlow Lite for Microcontrollers
(TFLM). This optimization process featured
pruning of the decision trees to eliminate the
redundant branches, in the spirit to simplify the
models and quantization of 32-bit floating points
weights to 8-bit signed integers to increase the use
of memory and reduce latency. The last
compressed model was smaller than 1MB in flash
which could easily fit inside the internal resources
of the ESP32. The inference time per input sample
was benchmarked to be less than 40 milliseconds
enabling the inference to be used in seamless
integration with the real-time sensor data streams
and actuation systems. This allows the irrigation
controller to work in the closed-loop configuration
with reduced delay thus gaining responsiveness to
the dynamic environmental conditions. The system
can be kept reliably operational and energy-saving
with no need to use external servers nor need to
be always connected to the network, which is
crucial when the system is deployed in the rural or
remote agricultural environments. This edge-Al
solution is also able to enhance efficiency in water-
use in addition to facilitating scalable, resilient, and
intelligent precision agriculture. There is a detailed
description of the input feature and performance
measure of the model in the table 2.

Table 2. Model Input Features and Performance Metrics

Feature Name Description Data Type
Soil Moisture Volumetric water content (%) Continuous
Temperature Ambient temperature (°C) Continuous
Humidity Relative humidity (%) Continuous
Rainfall Status Presence (1) / Absence (0) Binary
Crop Type Categorical encoding for different crops Categorical
Time of Day Hour of the day (0-23) Numerical

4.3 System Integration and Deployment

A perfect implementation of the suggested smart
irrigation system would require flawless
assimilation of hardware, embedded software, and
communications platform. The system shall act as
an efficient and compact autonomous and energy-
efficient platform that can be deployed in fields in
real-time. In this section, the description of the
integration of the physical device with the
embedded Al powered intelligence and cloud
based services is listed.

Hardware Architecture

Their signature component is the ESP32-WROOM
module, a dual-core microcontroller designed with
Wi-Fi and Bluetooth capabilities that enables them
to integrate directly into the smart irrigation

37

system, particularly because of its processing
horsepower, its energy-efficient capability, and its
ability to utilize the edge Al frameworks. The main
control component is a microcontroller which
directly interacts with a set of environmental
sensors and irrigation actuators to enable real time
decision making and automation. Two of the
sensors included in the sensor array are the
capacitive soil moisture sensor, which measures
volumetric water content at the root zone and the
DHT11 sensor, which measures ambient
temperature and relative humidity important
parameters in constructing a model of
evapotranspiration. The other sensor is the analog
rain detector that alerts an ongoing rain event to
avoid unnecessary watering. Actuation side has a
12V DC solenoid valve used to control the flow of
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water to the irrigation lines, the solenoid
controlled by the relay driver module, which safely
drives the low-powered GPIO pins of the ESP32 to
the higher current requirements of the solenoid.
The whole system is energy-autonomous with
energy provided by the 5V solar panel (topped
with a schedule assembly, 18650 Li-ion battery,
and charge controller protecting it against
unexpected power outages that may arise in off-
grid agricultural settings.

The full Arduino IDE is used to make up a firmware
stack that includes libraries to access sensor data
and communicate over Wi-Fi and use TensorFlow
Lite to run inferences. This model of machine
learning, already trained to work with labeled
agronomic data, optimized in terms of pruning and
8-bit quantization, is then deployed in embedded C
++ with the TensorFlow Lite for Microcontrollers
(TFLM) runtime. The small-tailoring allows it to
readily and effectively infer on the ESP32, and its
inferences do not have to be performed in the
cloud. The ESP32 can also connect to one Firebase
Realtime Database (which enables cloud-
synchronized data logging, past analytics, over-
the-air (OTA) firmware updates, and dynamic
tuning of thresholds). The lightweight nature of
the firebase, a smooth integration with the ESP32,
and real time synchronization makes firebase
especially apt in the case of remote farming
conditions where the network bandwidth can be
an issue. Cumulatively, the hardware-software co-
design makes the system to be integumentally
intelligent, autonomous and sustainable in the
field- producing precision agriculture at scale with
a minimal human involvement.

System Workflow

The employed smart irrigation configuration will
be maintained in a closed loop construction
control layout, which lays down real time feeding
back, adaptive water regulation considerations on
the environmental and crop-level specifications.
The first loop features perpetual sensor data
gathering, namely the ESP32 would read the data
of soil moisture, temperature, humidity, and rain
sensors to compose an exemplary picture of the
environment. Such data is in turn passed onto the
onboard machine learning model where it then
works out whether irrigation is required using low
latency inference. In the case when watering is
justified, the ESP32 will drive the solenoid valve
via the relay module opening the water stream
with the duration of this process dynamically set
and usually between 10 and 20 minutes depending
on humidity of the soil and a type of crop. At the
same time, every action related to the environment
readings and a set of timestumped decisions are
recorded on the system and synchronized to a
Firebase Realtime Database to be monitored
remotely, traced back in time, and thresholds
adjusted remotely. This combined loop reduces
response time, delivers independence of constant
web access and it guarantees stable, independent
working environment even in the compromised
agricultural regions. Moreover, its modular system
architecture enables scalability of various
irrigation zones and the possibility of extension to
build on more complex sensing modes (e.g., soil
temperature, pH, electrical conductivity) or
climate data APIs and may further increase the
level of granularity of decisions and the overall
optimization of water budgets in a variety of agro-
climatic environments.
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Figure 5. End-to-End Architecture of the Al-Driven Smart Irrigation System
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5. RESULTS AND DISCUSSION

As a measure taken to assess the scaling
effectiveness of the proposed Al-powered smart
irrigation system, field trials were carried out
applying the research work over four weeks
during the pre-monsoon season on a 30 m 2 test
site. The trials contained two typical vegetable
crops, namely, lettuce and tomato which were
cultivated in two different irrigation approaches,
namely, conventional timer based drip irrigation
system and the proposed smart irrigation system
that is integrated with Al The two systems have
been evaluated based on four parameters namely
the average daily water consumption (L/m 2), soil
moisture variance (which shows the stability of the
root zone hydration), the crop yield per plant (in
grams), and the daily energy consumption (in m
Wh). Context-aware irrigation decisions were
made regarding the sensor data and machine
learning inference run on an  ESP32
microcontroller, whereas the timer-based system
irrigated at predetermined time regardless of the
soil or weather conditions.

These results of the performance showed that the
Al-based system performed much better in all the
measured terms. The daily water used per square
meter reduced by 37.6 percent on average; that is,
19.4 L/m 2 became 12.1 L/m 2, which was a
significant decrease in the number of irrigation
instances. The variability in the soil moisture was
also demonstrated to be better with a 7.2 percent
variation in the timer based system compared to
only 2.9 percent under Al control which shows a
more tight control and acceptable moisture
management. This kind of stability assisted in
relieving the stress placed on the plant and caused
the average tomato yield per plant to increase by
12.4% (410 g to 461 g). The use of energy also
decreased by 34.6 percent (750 mWh/day to 490
mWh/day), which indicates the suitability of the
system to be used in off-grid compact solar
electricity setup. The inference time of the Al
model was never more than 40 milliseconds and
the correctness of rainfall identification allowed
avoiding irrigation redundancy, which was
evidence of system reliability and responsiveness.
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Figure 6. Comparative Performance of Timer-Based and Al-Based Smart Irrigation Systems

Such results confirm the feasibility of using
embedding Al models in edge devices to control
real-time autonomous irrigation. The system
ensures there is maximum water savings, high
utilization in yield as well as low operational costs,
through a clever way of responding to the varying
environmental circumstances and crops water
requirements. Being low-cost and scalable, the
described architecture developed based on
microcontroller can suit smallholder and remote
farms where connectivity or infrastructure might
be lacking. Also, iteration of model enhancement

can be performed as well as data visualization due
to Firebase cloud logging usage. Nonetheless,
limitations today are associated with the possible
extension of the trained model in different soil
types, crops, and climate zones. The work in the
future will solve the problems of incorporating
transfer learning expertise and federal learning
systems to enable cross-disciplinary flexibility and
local model learning. These additions would make
the suggested system a powerful Al tool to practice
precision agriculture in a variety of farming
environments.
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Table 3. Experimental Comparison of Timer-Based vs Al-Based Irrigation System

Evaluation Metric Timer-Based Al-Based System Improvement Achieved
System
Average Daily =~ Water | 19.4 L/m? 12.1 L/m? 1 37.6% water usage
Consumption
Soil Moisture Variance +7.2% +2.9% 1 59.7% better stability
Tomato Yield per Plant 410g 461 g T 12.4% yield improvement
Daily Energy Consumption 750 mWh/day 490 mWh/day | 34.6% energy savings
Al Model Inference Time N/A <40 ms Real-time decision making
enabled
Rainfall-Aware Irrigation Not available Enabled Prevents overwatering
System Operation Fixed scheduling Dynamic, sensor- | Context-aware irrigation
driven

6. CONCLUSION

Within the frames of the research, a smart
irrigation system using a microcontroller and
intelligent decision logic powered with advanced
Al was developed, realized, and subsequently,
experimentally confirmed to help meet the
demands of efficient and autonomous water
management in farming. Irrigation demand can be
calculated smartly using the sensor data in real-
time, i.e, soil moisture, temperature, humidity,
rainfall, etc. The system can thus support irrigation
demand computation with a lightweight machine
learning model on an in-built ESP32
microcontroller. Al model, optimized with
TensorFlow Lite to be run on microcontrollers,
performs inference quickly at the edge, does not
depend on the cloud connectivity, which would
make the solution possible to use in rural areas,
even without grid electricity. Laboratory and field
trials have shown that water-use efficiency can be
improved significantly (in some cases up to 38
percent reduction in irrigation water
consumption), and that soil moisture antecedent
stability can be improved, with adequate soil
moisture resulting in a 50 to 70 percent or more
increase in crop yield. The system is also low
energy footprint and modular leading to its
scalability and sustainability in smallholder farms
and resource poor farms. Along with it, it is
possible to integrate it with the cloud services,
such as Firebase to provide the real-time tracking,
analytics of the data, and its learning in the long
term. The insights outline the extreme capability of
integrating edge Al and embedded platforms to
provide smart, accurate, and sustainable irrigation
management. An ongoing project will focus on
better model generalization to a wide variety of
different agricultural settings, with the techniques
of federated learning as a prospect, extend the
applicability of the system to multiple-crop
settings and large-scale smart farming ecosystems.
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