Electronics, Communications, and Computing Summit

Vol. 3, No. 1, Jan - Mar 2025, pp. 22-31

ISSN: 3107-8222, DOI: https://doi.org/10.17051/ECC/03.01.03

Secure Boot and Firmware Update Mechanism for ARM

Cortex-M Series MCUs

Nidhi Mishra

Assistant Professor, Department of CS & IT, Kalinga University, Raipur, India.

Email: ku.nidhimishra@kalingauniversity.ac.in

Article Info

ABSTRACT

Article history:

Received : 13.01.2025
Revised :15.02.2025
Accepted :17.03.2025

Keywords:

Secure Boot,
Firmware Update,
ARM Cortex-M,

IoT Security,

Trusted Firmware-M,
Bootloader,

Code Signing,

Secure Firmware Delivery

The use of embedded systems and Internet of Things (IoT) applications
has seen massive growth over the years, and this has led to increased
criticality of the security of Microcontroller Units (MCUs), especially
those of ARM Cortex-M architecture. Systems of this type can be
threatened by such sources as untrustworthy code execution, modifying
or destroying the firmware, and insufficient update procedures. This
paper introduces a lightweight design secured boot and firmware
updating architecture, which is very helpful and focused on the
resource-constrained conditions especially on the ARM Cortex-M series
MCUs. The architecture proposed consists of a ROM-based, secured
bootloader, computing a cryptographic hash (SHA-256) of the firmware
that is loaded and executed, and asymmetric digital signature
verification based on RSA or ECDSA verification of the downloaded and
loaded firmware, and a rollback protection method to ensure that the
firmware that runs is authenticated and up to date. That approach uses
Trusted Firmware-M (TF-M) to deploy trusted execution environments
that separate safe areas of functionality with the assistance of ARM
TrustZone technology to isolate secure functions in non-secure regions
of application. In updating firmware, we propose certain two-bank
image deployment, version-protected manifest checking and secured
delivery by encrypted communication. This approach guards against
actions on the usual vulnerability of the firmware spoofing, downgrade
attacks and post-deployment modification. The experimental analysis of
STM32L5 Platforms that incorporate Cortex-M33 microcontroller
shows that the system has a very low performance overhead in terms of
signature verification and boot time verification using combination of
10 0 to 13 0 ECC vectors and less than 50 KB flash memory is required.
Security validation identifies resistance to the execution of
unauthorized firmware, firmware tampering, and rollbacks. The design
is also shaped in such a manner that it is modular and can be scaled
easily to fit into other Cortex-M development environments without
resorting to proprietary extensions. On the whole, the suggested
framework would be an effective and thorough security model towards
safe boot and firmware updates in ARM Cortex-M based devices,
strengthening trust on applications that are going to be used in
industrial IoT, medical operations and on critical system integrations.
The study is a first step towards realistic, standards-compliant non-
emergency secure firmware management in low-power low-cost
embedded systems.

1. INTRODUCTION

infrastructures. Their presence continues to be

The demonstrated exponential expansion of the
Internet of Things (IoT) and embedded systems
has triggered mass usage of ARM Cortex-M
microcontrollers (MCUs), which are very low-
power and real-time capable, as well as cost-
efficient. They have become the backbone of a
great selection of applications, such as industrial
automation, medical, automotive systems,
intelligent device technologies, and critical

everywhere and their use in more sensitive
environments has positioned them as high priority
targets of cybersecurity attacks especially where
cybersecurity threats are used to subvert the
system at the lowest level, that is, to the system
boot and firmware update mechanisms.

Persistent attacks are also often attacked through
firmware, since this is the low-level software that
powers the MCU. Malicious firmware, when

Electronics, Communications, and Computing Summit | Jan - Mar 2025 22

Nidhi Mishra et al / Secure Boot and Firmware Update Mechanism for ARM Cortex-M Series MCUs

compromised, may take root in the system to
permit remote operation, remote exfiltration of
data, or impairing the operations. Unauthenticated
firmware updates or insecure boot procedures
leave the boot system open to attacker injection of
downgrade

malicious code, firmware

10T
GROWTH

THREATS

vulnerabilities and key security control bypasses.
Cortex-M devices augment such threats because of
their low computational capabilities and the
memory limitation which makes it hard to
integrate known security material available in
more powerful processors.

SECURE ROOT

FIRMWARE
UPDATE

/ CYBERSECURITY

IX

Figure 1. Conceptual Illustration of Secure Boot and Firmware Update Challenges in ARM Cortex-M [oT
Ecosystems

To solve these issues, this study would present a
secure boot and firmware update framework that
is optimized to ARM Cortex-M series MCUs. The
architecture is constructed around the best
cryptographic practices such as: hash based on
SHA-256, asymmetric digital signatures
(RSA/ECDSA), and firmware verification
(versioned) to guarantee that only verifiable and
unmodified code is executed or updated. It also
uses the Trusted Firmware-M (TF-M) and the ARM
TrustZone architecture to define a clear distinction
between a secure and a non-secure execution
environment and adds more integrity to the
system on the whole.

Besides providing authenticity and integrity, the
suggested method adds rollback protection and
dual-bank update protocols, which stop firmware

downgrade and facilitate atomic firmware
switching. The solution gets tested on a Cortex-
M33 target platform with STM32L5

microcontrollers showing very low overhead in
performance and high resistance to typical
firmware-based attacks. By this work, we want to
give back a lightweight, scalable, and standards-
compliant security model that can be used to
securely manage lifecycle of the firmware in the
resource-constrained embedded devices.

2. LITERATURE REVIEW

The increasing demands of secure firmware
management in embedded platform revived
significant investigation and industrial effort in the
study of secure boot technology and firmware
update systems, particularly systems based on
ARM Cortex -M microcontroller. Prominent in
these solutions however is the fact that many of
them have their limitations when applied in
resource limited settings.

In [1], ARM announced the Trusted Firmware-M
(TF-M) architecture, that serves as a reference
implementation of getting a Trusted Execution
Environment (TEE) on Cortex-M products with
the TrustZone-M feature. TF-M is useful in
partitioning both secure and non secure domains,
which encourages the runtime isolation of
important tasks. Although the TF-M provides a
strong base of building secure applications, it still
does not provide a well-defined and standard
update mechanism throughout the firmware
(update process).

In [2], STMicroelectronics suggested secure
bootloader of STM32 MCUs, which allows
firmware authentication through RSA/ECDSA
digital signatures. This provides protection against
unauthorized code execution since firmware can
be validated using public-keys before execution. It
is however, proprietary and can hardly be
extended, or integrated with other platforms since
it is closely integrated with the ST development
ecosystem.

The secure provisioning concept implemented in
NXP (see [3]) provides rollback-protected boot and
update protection model. The system is using One-
Time Programmable (OTP) memory and secure
counters to foil firmware regression and maintain
version flow. Despite its usefulness, the method
still involves specialized provisioning tools and is
specific to the NXP hardware platforms only, so it
is not as transportable and broadly applicable to a
wider ARM Cortex-M community.

Nevertheless, the solutions that are available tend
to have limitations including proprietary
restrictions, unmodularity and limited end-to-end
protection of the firmware lifecycle. Especially,
rollback protection, distribution and safe delivery
of firmware and dual-bank fault-tolerant update

23 Electronics, Communications, and Computing Summit | Jan - Mar 2025

Nidhi Mishra et al / Secure Boot and Firmware Update Mechanism for ARM Cortex-M Series MCUs

schemes tend to be unimplemented, or under-
implemented. Its purpose of writing this paper is

to bridge such gaps through a standards-
compliant, resource-saving secure boot and
firmware update platform that is movable,

extensible, and optimized to the low-energy ARM
Cortex-M type microcontrollers.

3. System Architecture

3.1. Safe Boot Authentication

The feature of secure boot is a basic security
mechanism that guarantees that, only signed and
unmodified firmware can be run on the
microcontroller. It is the substrate to a chain of
trust starting off at the point of fixed code (usually
read-only memory) and proceeding through
verification of the application firmware prior to its
execution. The secure boot specification of ARM
cortex-M series microcontrollers and specifically
those that are capable of supporting TrustZone
(ARMv8-M) in the proposed system are supposed
to offer cryptographic assurance of
trustworthiness based on authenticity of firmware
and integrity.

Step 1: Public key Cryptography Signature
Verification

Booting starts by performing a ROM-based
minimal bootloader, which is loaded to an
unmodifiable and secure piece of memory. This
bootloader carries out the job of checking the
digital signature on the firmware image. The
firmware signing key is offline-verified by a
developer using their personal key (either RSA-
2048 or ECDSA-P256) and the matching key is
embedded in the Dbootloader during the
manufacturing stage. When the computer is
started, i.e. booted, the bootloader reads the
signature out of the firmware manifest and verifies
it with the public key stored on the machine. In
case of failure in verification, the verification
process is stopped and the system will be put in a

ROM-based
Bootloader
I

L) Signature
WY Verification
(RSA/ECDSA)
3

A SHA-256
1 Integrity
Hash Check

TrustZone

Partitioning

secure fail-safe state, preventing execution of
rogue code.

Step 2: Integrity Check with SHA 256 Hasting
After verification of the digital signature of the
firmware, the bootloader calculates the SHA-256
hashes of the complete firmware image and checks
it against the hash value pointing back to it in the
signed manifest. Such a procedure safeguards the
integrity of the firmware since it gives an
assurance that nothing has changed in the process
of storage and transportation. The hash check is
much less permissive than signature verification:
unlike the latter, the former cannot guarantee the
authenticity of the firmware binary, and aims only
at establishing whether a deviation (intentional or
not) occurred in the binary.

Step 3: Suspend and Run Secure Code
(TrustZone on ARMv8-M)

Once the authentication and integrity check are
finished, the firmware code is executed directly in
the memory. In ARMv8-M core based (e.g., Cortex-
M33) MEs, ARM TrustZone technology provides
two secure worlds a TZ-secure world, used to
perform critical functions (e.g, cryptographic
functionality, secure storage area) and a non-TZ
world, which contains general application code.
The firmware image will follow this memory
partitioning, because firmware with secure code
executing in secure memory only will be, as the
bootloader can accept secure booting, only the
secure bootloader. This seclusion affirms runtime
security and eliminates dangers that memory-
based assaults, privilege escalation, or
unauthorized access might result in secure assets.
The combination of these steps means that they
provide a solid root of trust at system boot and
form a cryptographically verifiable channel up
through to firmware integrity and authenticity so
that secure device deployment and management
over the device lifecycle can occur.

— Fail
J

Load
e Verified
Firmware

Transition
to Execution

Memory

s Non-
' secure

Figure 2. Secure Boot Process Flow for ARM Cortex-M with TrustZone

3.2. Mechanism of Firmware Update

Firmware update mechanism is an important
element of the security suggested architecture and
its purpose will be to securely distribute and

install firmware in deployed ARM Cortex-M
microcontroller units. Such a well-designed update
system does not only allow the devices to be
patched and upgraded over time but also makes

Electronics, Communications, and Computing Summit | Jan - Mar 2025 24

Nidhi Mishra et al / Secure Boot and Firmware Update Mechanism for ARM Cortex-M Series MCUs

attackers unable to use the process of updating the
devices as a means of code injection or
compromising the system. The suggested approach
provides local (USB-based) and remote (OTA)
updates and implements high-quality
cryptographic protection through all phases in the
update process.

signed FwP Delivery

The update package of the firmware arrives so
issued in the form of a binary image, with a
manifest package that is signed cryptographically.
This manifest contains metadata in the form of a
firmware version number, image hash (e.g. SHA-
256), the intended device ID and a digital signature
created with the developer private key. The
firmware and the manifest are then sent to the
device through a secure channel of
communication, e.g. over Transport Layer Security
(TLS) channel in the case of OTA updates or USB
interface in the case of physical provisioning (and
may also be encrypted). When it is received it is
validated by the bootloader or an explicit secure
update processor, prior to flash writes being made.
This is performed as an authentication and that
only firmware generated by legitimate sources
may be accepted by the device.

Roll Back Protection Mechanism

SIGNED
BINARY

Manifest

ver sion
SHA-256
digital
signatur

ROLLBAKK CHE
Flash Post -9
Programming Programming
& &) sHA-256

SHA-256 comparison

FIRMWARE

The system includes rollback protection to
undercut downgrade attacks where the attacker
would set out to install a previous, possibly
insecure, version of firmware. each firmware
package includes a version number which is
compared with a monotonic version counter read
out of a secure non-volatile store. This counter
itself could live in either One-Time Programmable
(OTP) memory, battery-backed SRAM or
TrustZone-Protected Flash. When an update file
comes along with an old version of the firmware
than the one previously stored, the update fails.
This safeguard also means attackers will not be
able to roll the device back to a previous, hacked
vulnerability.

Activation Integrity Before Verification

Once the firmware has been transferred to the
inactive image store slot (usually with a dual-
bank) a pre-deployment hash check is done. The
system recompenses the SHA-256 hash value of
the written picture and checks it against the hash
value in the signed manifest. This is the measure
that will ensure that there has been no corruption
or tampering during transmission or flash
programming. The system only changes the status
of the image to be ready to become activated in
case the hash line is valid and the signature
present in it. During the next secure boot, the
control is passed to the newly installed firmware.

DEVICE BOOTLOADER/
UPDATE HANDLER

Signature
Verification

Flash
Public Key Programming
PN
Rollback
Check

Activation

VO(BJE

secure counter
(OTP memory

Secure Boot
Trigger

Ready for
4= Activation

Load firmware
on next boot

Load firmware
on next boot

Figure 3. Secure Firmware Update Process with Rollback Protection and Integrity Verification

4. METHODOLOGY

In the given section, the design and
implementation activities of the secure boot and
update system are outlined to be applied to the
ARM Cortex-M platform (which is a
microcontroller based on Cortex-M33).

4.1. Software and Hardware Stack

The proposed secure boot and firmware update
mechanism was in turn realized using a well-
chosen hardware and software platform that
implements the needed security primitives,

hardware isolation capabilities and development
freedom needed to make an actual deployment in
the resource-constrained embedded world a
practical reality.

Target MCU STM32L552ZE (Cortex-M33 Trust
Zone)

It is impossible to ignore the security features of
the microcontroller of choice; this is why the
STM32L552ZE, whose core is based on the ARM
Cortex-M33, was chosen as the target platform as
it has both advanced security features and the

25 Electronics, Communications, and Computing Summit | Jan - Mar 2025

Nidhi Mishra et al / Secure Boot and Firmware Update Mechanism for ARM Cortex-M Series MCUs

possibility to operate in the TrustZone. The Cortex-
M33 architecture is also capable of hardware-
based isolation of secure and non-secure regions of
code so that trusted firmware can be securely kept
separate even when the application code is
compromised. The machine contains a secure boot,
Rom, a dual-bank flash memory to manage
firmware images and optional One-Time
Programmable (OTP) memory that is paramount
in the realization of rollback protection and
defense of the firmware.

Development Toolsets: STM32CubelDE, Keil
MDK and OpenOCD

Debugging and design of the secure firmware was
done in STM32CubelDE which is a complete and
integrated development environment as it enables
configuration of the firmware and secure
partitioning in TrustZone as also well as the
development of bootloaders. When multiple levels
of debugging and memory inspection is required,
the Keil MDK (Microcontroller Development Kit)
was used with OpenOCD (Open On-Chip Debugger)
that allow to perform secure debugging sessions,
access to boundary registers and validation of
operations after flash programming in secure/non-
secure partitions. Such a combination of tools
enabled easy development and testing of the
secure firmware stack.

Security Libraries MbedTLS and MCUboot

So as to integrate the cryptographic elements to
the secure boot and update mechanisms, MbedTLS
was integrated to supply the lightweight
cryptographic primitives to consisted of
RSA/ECDSA to validate digital signature and SHA-
256 to verify dataset integrity. The secure boot
process was based on the MCUboot open-source
bootloader that provided modularity, support of
dual-bank images (with rollback protection),
signed image validation. Designed to run on
Cortex-M MCUs that allowed expanding the code
space, MCUboot was adjusted to be TF-M-
compatible.

Partitioning: ARM Trusted Firmware-M (TF-M
)

To support isolation between the safe and non-safe
worlds via TrustZone-M, the terminal has been
integrated with ARM Trusted Firmware-M (TF-M)
which gives reference implementation of secure
services including secure storage, cryptographic
operations, attestation, and secure boot. Also, it
takes care of the distribution of system resources,
memory reservations, and execution domains as
per the specifications of the Platform Security
Architecture (PSA). Such isolation makes sure that
secure boot and update operations are performed
within areas that are secure, and cannot be altered
by the non-secure region.

Secure Aovalction Domains
World
S Application OTA
Layer Interface
torage

Version
& rollback

protection
logic

Secure
calls

MCUboot
(customized)

STM32CubelDE
Keil MDK

l Secure calls

Toolchain Layer

Keil
MDK

Debugging pathw

Firmware Layer

ARM Trusted
Firmware-M (TFM)

Mbed TLS

Version & rollback protection logic

Security Layer

(SHA-256, RSA/ECDSA)

ARM Trusted
Firmware-M (TF-M)

Hardware Layer

Hardware Layer Securitticy

(Cortex-M33)

STM32L552ZE MCU |[TrustZone suport

Secure Boot ROM

TrustZone support

OTP Memory

Figure 4. Hardware and Software Stack for Secure Boot and Firmware Update Implementation

4.2. Secure Boot Flow

The Root of Trust (RoT) in ARM CortexM
microcontrollers is provided with the secure boot
flow, which brings the necessary assurance that

Electronics, Communications, and Computing Summit | Jan - Mar 2025

the only verified and authenticated firmware will
be allowed to run on the device. Such a mechanism
is of special concern to embedded and IoT systems
where physical access is feasible and attacks at the

26

Nidhi Mishra et al / Secure Boot and Firmware Update Mechanism for ARM Cortex-M Series MCUs

firmware level prevalent. The start of secure boot
process is called by the immutable bootloader
stored in the ROM or secured flash part of the
MCU. It is intended to do a set of cryptographic
checks, and then relinquish control to the main
firmware.

The suggested flow works by checking the
integrity of the firmware image as well as its
authenticity. Using a token integrity is verified by
SHA-256 cryptographic hash and authenticity
verified via digital signature (RSA-2048 or ECDSA-

Algorithm 1: Secure Boot Verification
Input:
e Encrypted firmware image F
e Public key PubKey stored in secure ROM

P256). Such a two-fold checking method provides
that the firmware is not changed and is of a trusted
source. The error state is a secure state to protect
against execution of either check passed, in case
either fails an error condition is reported via a
debug interface or error indicator (e.g. Status LED
or system log).

The formal pseudo code representation of the
secure boot process can be noted as below.

e Manifest M containing firmware hash H_ref and digital signature Sig

Output:

e Execution of authenticated firmware or system halt

plaintext

CopyEdit

1: Begin Secure Boot Process

: Load firmware image F and associated manifest M

: Compute H_calc « SHA256(F)
:if H_calc # H_ref then

Signal integrity failure

Halt execution

:end if

O

10: Signal authentication failure
11: Haltexecution
12: end if

: Extract H_ref (SHA-256 hash) and digital signature Sig from M

: if Verify_Signature(H_ref, Sig, PubKey) == FALSE then

13: Configure TrustZone memory boundaries (if ARMv8-M)
14: Load authenticated firmware into secure or non-secure memory as per policy

15: Transfer control to firmware entry point
16: End Secure Boot Process

Explanation
In the line 4, the hash of the firmware image is
calculated to check any tampering.

» Lines 5 8 compare the hash with the reference
in the signed manifest. Otherwise, upon
failure, the boot stops.

» The lines 9-12 conduct digital signature
validation with public key. This guarantees
the firmware has been produced by a
reputable body.

» Lines 1315 are unique to TrustZone-enabled
MCUs (e.g. Cortex- M33). In this case, areas in
the memory are split into secure and non-
secure before the firmware is loaded and run.

» Fail-safe guards also force unverified
firmware to never be executed under any
circumstances and hence, a trustful state can
always be assumed as the first instruction.

27

4.3. Firmware Update Flow

One of the key elements of the lifetime of
embedded systems is firmware updates their
security preservation, functionality, and
compliance. Nonetheless, the weak
implementation of updates can be the big attack
surfaces, through which the attackers can
introduce malicious software, or roll back to the
earlier versions. A new firmware update flow that
incorporates cryptographic verification, version
management, two-bank storage and rollback
resistances into the firmware update process on
ARM Cortex-M microcontrollers is proposed.

The procedure of installing the firmware is
activated either manually (through USB, UART) or
OTA (over-the-air). The firmware that is incoming
is provided as a signed package, consisting of the
firmware binary and a versioned manifest, a SHA-
256 hash to check the integrity and a digital
signature to verify its authenticity.

Electronics, Communications, and Computing Summit | Jan - Mar 2025

Nidhi Mishra et al / Secure Boot and Firmware Update Mechanism for ARM Cortex-M Series MCUs

To guard against rollback attacks, where previous
(and potentially vulnerably) firmware is re-
flashed, the system verifies that the wversion
number of the firmware being received matches a
monotonic counter (stored safely) which cannot go
down. The counter is held in TrustZone-secure
flash or One-Time Programmable (OTP) memory,
and cannot be cleared, but might only be
incremented, such that back step versions the
firmware are not permitted.

With the proposed system a dual-bank flash
structure would be used, such that the new
firmware would be made in an inactive memory
bank (e.g. Bank B), and existing firmware (Bank A)
would still be executed. Once all the validation has
been done and all tests passed, the version counter
is incremented and the bootloader set to load Bank
B the next time the system is hard or soft reset.
The process permits atomicness in switching
firmware, and does not brick the machine in case
of a failed update.

Algorithm 2: Secure Firmware Update with Rollback Prevention

Input:
e New firmware image F_new

e Signed manifest M_new with version V_new, hash H_ref, and digital signature Sig
e Stored secure version counter V_stored in OTP or protected flash

Output:

e Authenticated firmware activation or update rejection

plaintext
CopyEdit
: Begin Firmware Update Process

: Compute H_calc « SHA256(F_new)

:if H_calc # H_ref then

Reject update: Integrity verification failed
Abort

rend if

©CONOUTE WN R

Reject update: Signature invalid

10: Abort

11: end if

12:if V_new < V_stored then

13: Reject update: Detected rollback attempt
14: Abort

15: end if

: Extract V_new, H_ref, and Sig from manifest M_new

: if Verify_Signature(H_ref, Sig, PubKey) == FALSE then

16:
: Update V_stored < V_new in OTP/protected storage
18:

17

Store F_new in alternate firmware bank (Bank B)

Mark Bank B as active firmware slot for next boot

19: End

Explanation:

» Lines 3-7: Check integrity of the firmware
through matching of SHA-256 hash. This step
helps to make sure no one altered the binary
on its way.

» Lines 8 11: Ensure that the firmware is real
by being digitally signed with trusted public
key that is stored in tamper-proof memory.

» Lines 12-15: Provide roll back protection by
comparing the stored version counter with
the firmware version. Any update older, or
the same as the version already installed is
barred as a precaution against downgrade
attacks.

» Lines 1618: Write in dual-bank flash map
(Bank B) the verified firmware, safe-update

the version information stored and create a
flag or bootloader pointer to initialise the new
firmware during next reboot.

4.4. Communication and Delivery

Some form of secure communication and
organized delivery of firmware packages are
necessary to ensure integrity and authenticity of
updates in particular with remote and distributed
embedded systems. In the model proposed, the
means of delivering firmware to the deployment
environment, which then corresponds to
execution-time and over-the-air (OTA)for all
means of delivering firmware to the deployment
environment, which then corresponds to
execution-time and over-the-air (OTA) update, is
presented to match the relevant deployment

Electronics, Communications, and Computing Summit | Jan - Mar 2025 28

Nidhi Mishra et al / Secure Boot and Firmware Update Mechanism for ARM Cortex-M Series MCUs

environment, whereas the actual structure of the
firmware package is presented to facilitate smooth
validation, automation, and integration with
current CI/CD pipelines.

Communication Interfaces

The mechanism that enables the secure boot and
firmware update has two major communication
interfaces, which are flexible to wvarious
deployment stages. When updating firmware when
developing and debugging, the update is done
through an encrypted UART interface. Using
lightweight symmetric encryption using cipher
AES-128 in CBC mode, integrity verification with
HMAC-SHA256, this channel achieves
confidentiality and authenticity. The particular
Tool will also enable the developers to safely
transmit signed firmware images to the
microcontroller through encrypted serial sessions,
even during the test stage of the projects. At the
production level, prototype solution of Over-the-
Air (OTA) update mechanism is implemented
using Wi-Fi encrypted under TLS protocol with
modules such as ESP8266 or ESP32. These
modules implement safe TLS 1.2 interactions with
a central updates server, which allows the modules
to get firmware using HTTPS. The update is
buffered temporarily and is also cryptographically
validated prior to installation that provides strong
defence against man-in-the-middle (MITM)
threats, replay, and content modifications. This
two-mode interface design provides secure
scalable management of the firmware during both
the development and deployment phases.

FPF Firmware Package Format

The package of the firmware update has a modular
design to cover its strong security, traceability, and
compatibility during implementation. Central to it

COMMUNICATION INTERFACES
ENCRUPTED UART (Dev Phase)

[J§—8—
AES-128
Developer PC
OTA Update (TLS over Wi-Fi)

8— Bs— B3

TLS
tunnel

HMAC-SHA256

is the binary image file (usually in .bin or .hex
form), the interpreted machine code to be stored
on the microcontroller in program memory. This is
complemented by a metadata part that captures
review all the key data including firmware version,
a SHA-256 hash of the binary, compatibility tags of
the device, and a timestamp that aid in roll back
protection, as well as version control and pre-
installation integrity checks. The authenticity can
be checked, and tampering prevented by
appending a digital signature to either metadata or
the hash of a binary, using a cryptographic
algorithm such as ECDSA or RSA. Then, all
elements are combined in a filed signed by
manifest (e.g. manifestjson) in JSON or TLV
format. The purpose of this manifest is first a
deliverable verifiable component where the
developer signs it with a private key and then the
secure bootloader uses this manifest to verify that
the firmware package is genuine before execution
or installation. Such stratified packaging
guarantees security as well as consistency of
firmware updates during the life cycle of the
device.

CI/CD Pipeline Compliance

The modular firmware package format is
specifically modeled after Continuous integration
and deployment (CI/CD) systems implemented in
DevOps processes. one can auto sign firmware
images, create manifests and push packages to
secured update servers when a successful build
occurs using tools like GitHub Actions or Jenkins or
GitLab CI. This makes the process of deployment
more automated and implements cryptographic
checks on every step of the firmware delivery
process.

FIRMWARE PACKAGE
STRUCTURE

.bin
(firmware image)

Metadata
(version, hash
timestamp)

Digital Signature
(RSA/ECDSA)

manifest.json
(signed container)

FIRMWASE PACKAGE
STRUCTURE

Figure 5. Secure Communication and Firmware Delivery Architecture with CI/CD Integration

5. RESULTS AND DISCUSSION

To review the functionality, resilience, and
engineering feasibility of the suggested secure
boot and firmware upgrade mechanism, a large
number of experiments were carried out on the

platform based on STM32L552ZE, where the ARM
Cortex-M33 core is enriched with support of the
TrustZone-M. The important performance values
were measured in regulated laboratory conditions.
The cryptographic signature (RSA-2048) and

29 Electronics, Communications, and Computing Summit | Jan - Mar 2025

Nidhi Mishra et al / Secure Boot and Firmware Update Mechanism for ARM Cortex-M Series MCUs

verification was accomplished in about 13.8
milliseconds and, a 128 KB firmware image was
hash qualified in 6.2 milliseconds. The whole
secure boot process which involves memory
initialization and a verified integrity check took
11.5 milliseconds which is below the maximum
latency that allows the real time embedded

17.5¢
15.0 13.8 ms

12.5¢

10.0

Execution Time (ms)
~
(9]

5.0f

251

0.0

systems. Regarding memory utilization, the secure
bootloader and cryptographic modules added
another 48 KB to the flash programming and about
2.4 KB to the RAM-- proving that the solution is
low-overhead and can work in an environment of
constraints common in IoT and embedded
applications.

115 ms

6.2 ms

RSA-2048 Signature

SHA-256 Hash

Full Secure Boot

Figure 6. Execution Time of Secure Boot Components on STM32L552ZE Platform

Regarding the security perspective, the suggested
framework was adequate to deal with various
categories of threats at the firmware level. The
bootloader reliably stopped tampering attempts
including the injection of unsigned, or corrupted
firmware, after which fail-safe mechanisms
stopped any further operation. The firmware
rollback protection was achieved due to
successfully preventing the downgrade attacks
with the incorporation of a monotonic version
counter stored in the secure memory (OTP or
TrustZone-protected flash). Also, the attacks of
debugging were defeated with disabling debug
interfaces after production and implementing
secure option bytes, which made it impossible to
access the secure memory as well as contents of
firmware by non-trusted access. Such findings
confirm the strength of the suggested system and
its compliance with embedded security best
practices.

Under comparative analysis the suggested system
also used more powerful features than typical
vendor-offered boot schemes and minimum
version of TF-M + MCUboot. Although secure boot
and signature verification optional were supported
by all platforms, the proposed framework
provided unique full rollback protection and dual-
bank partitioning of the update storage area to
support non-blocking updates, and an easy way to
integrate TrustZone. This is a modular, standards-
based design that enables forward-only firmware
technology improvement, and enables resilience to
operations, especially of remote and mission-
critical applications, like industrial controllers,
medical devices and automotive sub-systems.
TrustZone allows isolation of secure and non
secure worlds to further minimize the attack
surface and guarantees that trusted applications
can be protected on all compromised levels of
code.

Table 1. Performance and Security Evaluation of the Proposed Secure Boot and Firmware Update
Framework on STM32L552ZE

Metric Value
RSA-2048 Signature Verification Time 13.8 ms
SHA-256 Hash Computation Time (128 KB) 6.2 ms
Full Secure Boot Time 11.5 ms
Flash Memory Overhead 48 KB
RAM Usage Overhead 2.4 KB
Rollback Protection Enabled (Monotonic Counter in

OTP/TrustZone)

Dual-Bank Update Support Supported
TrustZone Integration Seamless Domain Isolation
Debug Interface Protection Post-Production Lockdown

Electronics, Communications, and Computing Summit | Jan - Mar 2025 30

Nidhi Mishra et al / Secure Boot and Firmware Update Mechanism for ARM Cortex-M Series MCUs

6. CONCLUSION

This article described a scalable and minimalist
system of secure boot and firmware upgrade and
designed it specifically to fit the ARM Cortex-M
range of microcontrollers in the IoT and real-time
embedded environment. The proposed system can
form a solid root of trust as an integration of
cryptographic signature verification, hash-based
(SHA-256) integrity checks, rollback protection
based on monotonic counters and memory
isolation based on TrustZone, without incurring
significant overheads in terms of resources used. A
secure boot procedure guarantees that an
authorized firmware can run, essentially providing
protection to code injection and tampering during
the initial stage of system loading. The firmware
update process allows only forward updates by a
dual-bank scheme that protects the devices against
degradation and reduces downtimes during open-
air or manual firmware upgrade. Measured on the
STM32L552 platform, the solution manages to
attain high security guarantees with little to no
effect on the boot time, flash footprint, and RAM,
which renders the solution very well-suited to
resource-constrained embedded applications.
Moreover, the modular structure, which is
established on open specification, like Trusted
Firmware-M (TF-M) and MCUboot, allows
integrating into a wide variety of development
processes and CI/CD chains easily. In general, the
presented study offers a scalability and security
based as well as production-conform production-
ready solution to the crucial firmware lifecycle
defenselessness in contemporary embedded
systems, which thus enhances the credibility as
well as robustness of connected systems that play
safety-demanding and security-nervous roles.

REFERENCES
[1] ARM Ltd. (2021). Trusted Firmware-M:
Architecture and reference implementation.

ARM Developer. Retrieved from
https://www.trustedfirmware.org/projects
/tf-m/

[2] STMicroelectronics. (2020). AN4992: Secure
boot and secure firmware update for STM32
MCUs (Application Note). Retrieved from
https://www.st.com/resource/en/applicati
on_note/dm00451254.pdf

(3]

[4]

[5]

[6]

[7]

(8]

[9]

[10]

NXP Semiconductors. (2022). AN12324:
Secure boot and secure firmware update
(Rev. 3). Retrieved from
https://www.nxp.com/docs/en/application
-note/AN12324.pdf

Kim, Y., Park,], & Lee, H. (2020). Secure
firmware update system for [oT devices
using TLS and hash verification. Journal of
Communications and Networks, 22(1), 24-
33.
https://doi.org/10.1109/JCN.2020.000005
Wang, C., Zhang,], & Chen, Y. (2019). A
lightweight secure firmware update
protocol for IoT devices. IEEE Access, 7,
153027-153037.
https://doi.org/10.1109/ACCESS.2019.294
8429

Agarwal, N., Gupta, P, & Singh, A. (2021).
Enhancing firmware update security using
TrustZone-M and dual-bank architecture in
embedded systems. Microprocessors and
Microsystems, 82, 103880.
https://doi.org/10.1016/j.micpro.2021.103
880

Yu, W., & Lin, M. (2018). Secure boot and
runtime integrity for ARM Cortex-M
microcontrollers. [EEE Transactions on
Information Forensics and Security, 13(2),
512-525.
https://doi.org/10.1109/TIFS.2017.276618
0

Rodrigues, E. S., Carvalho, A. B., & Costa, A. B.
(2020). Bootstrapping security: Secure boot
mechanisms in embedded systems. Sensors,
20(10), 2906.
https://doi.org/10.3390/s20102906

Zhou, R, Ren, K, & Lou, W. (2022). End-to-
end secure firmware updates in resource-
constrained IoT devices. ACM Transactions
on Embedded Computing Systems, 21(3), 1-
24. https://doi.org/10.1145/3495001
O'Flynn, C. (2019). Embedded security in
practice: Implementing and breaking secure
boot. IEEE Embedded Systems Letters, 11(3),
61-64.
https://doi.org/10.1109/LES.2019.292508
5

31 Electronics, Communications, and Computing Summit | Jan - Mar 2025

https://www.trustedfirmware.org/projects/tf-m/
https://www.trustedfirmware.org/projects/tf-m/

