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The growth of Internet of Things (IoT) devices and the greater use of
real-time video analytics has placed to severe stress on conventional
cloud-centric processing systems, especially as they relate to latency,
bandwidth requirements and info security. To overcome such
drawbacks, this paper suggests a new FPGA-based edge computing
system with an architecture that is capable of providing high-
performance real-time deep neural network (DNN)-based video
analytics in limited-resource IoT devices. This system uses a quantized
convolutional neural network (CNN), that is an optimized YOLOv4-Tiny
model, integrated to work with a Field-Programmable Gate Arrays
(FPGA) in doing object detection and tracking on high-definition video
streams due to the inherent parallelism, reconfigurability, and energy
efficiency of the FPGAs. It is applied to a Xilinx ZynqUltraScale+ MPSoC
with its Deep Learning Processing Unit (DPU) used to speed inference
and integrated ARM processor used to do input/output preprocessing
and postprocessing functions. The targeted edge system would analyze
video streams provided by IoT-enabled cameras and provide real-time
output of analytics data, which would decrease the reliance on the cloud
servers to the minimum. Experimental assessment on the dataset
provided by the AI City Challenge shows significant improvement in
throughput (32 FPS), inference latency (31 ms), and power
consumption (4.5 W), coupled with only a slight trade-off on detection
accuracy when compared to GPU-based platforms (e.g. NVIDIA Jetson
TX2) and USB-based accelerators (e.g. Intel Movidius NCS2). Due to its
real-time capability and efficiency, the system is appropriate in terms of
the deployment of the system in applications like smart surveillance,
intelligent transportation system, and monitoring of the industry. The
research confirms that complex DNNs can be used on FPGAs at network
edge and have the potential of changing the landscape of edge Al
deployment through scalable, low latency and power-aware solutions.
Fine-grain parallelism with multiple FPGAs, more architectures of
DNNs, and federated learning frameworks integration are future
improvements toward adaptive edge intelligence.

1. INTRODUCTION

volume and low-latency, which is far difficult in the

The blistering growth/proliferation of the Internet
of Things (IoT) has led to the transformation of
data gathering and automation in various sectors
including smart cities, self-driving cars, healthcare,
and industrial monitoring. Real-time video
analytics is also among the many applications of
the IoT that can provide smartness to systems, in
terms of perception, analysis and responding to
changing situations. Detection of traffic violations,
monitoring pedestrian behavior, detection of
anomalies in the public spaces and predictive
maintenance in industrial plants are some
examples. Such applications necessitate the real-
time processing of video streams that are high-in-

instance where the sole deployment is centralized
cloud structures.

The conventional cloud-based video analytics
systems are limited in the sense that they are
subject to high network latency and high
bandwidth needs, as well as prone to data privacy
breaches. Deep neural network (DNN) inference
functions best in high-resolution video frames
offloaded to cloud servers, which is inadmissible in
latency-sensitive services, including emergency
response systems or autonomous driving code. In
addition, continuous streaming of large amounts of
raw video data generated at the edge devices to
the cloud may easily saturate the available
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network resources with the result of congestion
and lowered service performance.

Edge computing has been presented as an
interesting paradigm to deal with such challenges
by moving computation nearer to the source of
data. Performing inference directly on edge
devices allows systems to slash latency, save
bandwidth, and offer  greater privacy.
Nevertheless, the use of computationally heavy

deep learning models on time and resource-limited
edge systems adds new constraints of finite
computing capabilities, the size of memory and
poor energy consumption. Dedicated general-
purpose (CPU) and even embedded GPUs can be
insufficient to address the require-ments of the
highly constrained real-time operations of current
video analytics applications in power-sensitive
applications.
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Figure 1. Edge-Enabled Real-Time Video Analytics in IoT Ecosystems

This study tries to address these issues by
examining the potential of Field-Programmable
Gate Arrays (FPGAs) as edge accelerators to deep
neural network inference. FPGAs present a rare
combination of programmability, parallelism, and
energy consumption, which allow implementing
application-specific hardware pipelines that
optimize a precise neural network architecture. At
a rather low power limitation, FPGAs can be
targeted at flexible model architectures that may
change over time due to a greater number of
reprogrammable units compared to fixed-function
ASICs or power-hungry GPUs. New toolchains
based on FPGAs, including the Vitis Al and high-
level synthesis (HLS) frameworks developed by
Xilinx, has greatly reduced the threshold to use
complex CNNs in FPGAs.

The edge video analytics platform presented in this
publication consists of fully-integrated
infrastructure that makes use of FPGA acceleration
in order to provide real-time inference of
optimized convolutional neural networks. Our

experiment is to run a modified (quantized)
version of YOLOv4-Tiny on a Xilinx
ZynqUltraScale+ MPSoC development board where
it runs on the Deep Learning Processing Unit
(DPU) to provide hardware-accelerated object
detection. The architecture is deployed to directly
run on video streams of IoT cameras and has the
capability of high throughput, low-power inference
with limited outside needs. We test the suggested
system on practical datasets and compare it to
well-known edge Al toolboxes showing its
exceptional efficiency in the key patches of latency,
throughput, power, and accuracy of object
detection.

The paper suggests how FPGAs can be used as an
effective enabler of next generation edge Al
systems and provides a scalable, reconfigurable
and energy-efficient deep learning-based video
analytics edge processing solution.

2. RELATED WORK
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The recent progress in the area of edge computing
has gained considerable influence on the
development of real-time video analytics solutions,
especially in resource-constrained Internet of
Things (IoT) ones. The Traditional systems heavily
depend on centralized cloud systems, however, the
use of low-latencies and power-efficient
computation had shifted the spotlight to edge-
based deployment models by implementing
differentiated hardware, such as GPUs, ASICs, and
FPGAs.

The application of edge-based video analytic
systems, especially embedded GPUs, in speeding
deep neural networks (DNNs) has been intensively
investigated. As an example, the NVIDIA Jetson
family includes powerful features in terms of
embedded Al processors with support on CUDA
allowing a real-time deployment of CNN-based
objects detection models such as YOLO and SSD
[1]. Nevertheless, despite their flexibility, high
throughput and GPU throughput optimization, the
power and thermal limitations of GPUs frequently
exclude them as the preferred choice when used in
long-term design of a mobile device or battery-
powered edge computation.

Conversely, application specific Integrated circuits
(ASIC) provide very optimized performance per
watt with a specific set of inference applications.
Examples of this category are Google Tensor
Processing Unit (TPU) and Intel Movidius Neural
Compute Stick that provide near-real-time
inference (latency) of edge-execution workloads
[2]. One disadvantage of ASICs however is that
they are extremely inflexible to changes in model
architecture or multi-tasking cases that frequently
occur in smart cities.

FPGAs achieve a good compromise between
performance, flexibility and power efficiency. The
capabilities of FPGA-based DNN inference engines
have been shown in edge use-cases by more recent
research. Deep Learning Processing Unit (DPU) is
an [P core by Xilinx to accelerate CNN on its
ZyngMPSoC platforms. It has been proved that
lightweight models, such as YOLOv2-Tiny,
MobileNet, could be deployed on DPU to satisfy
real-time requirements by using much less energy
disposed to GPUs [3].

A number of open-source frameworks and
toolchains have now appeared to simplify
deployment of DNNs on FPGAs. Xilinx Research
Labs has developed FINN, that targets quantized
neural networks with High-Level Synthesis (HLS),
providing inference with ultra-low-latency [4]. In
the same manner, HLS4ML, a project by CERN, is
aimed at low-latency scientific detector neural
network inference, and it is accelerated by an
FPGA [5]. Vitis Al gives Xilinx a full quantization
stack, compilation, and deployment toolchain to

make TensorFlow and PyTorch models run on
FPGAs seamlessly combine hardware and software
co-design.

Table 1 shows a comparison of inference
performance on various hardware platforms in
more detail, showing the trade-offs between
latency, throughput, power efficiency and
accuracy. Such comparisons underline the
exclusive strengths of acceleration with FPGAs to
balance between real-time and energy efficiency,
especially in embedded edge systems.

All in all, there is an indication in the literature that
although the use of CPUs and GPUs is still
prominent, FPGAs provide a superior and highly
flexible platform to run Al-based work in the edge.
This gives us inspiration to develop and investigate
an FPGA-centric video analytics design that suits
IoT applications that are highly responsive and
energy-efficient.

3. System Architecture

This section presents the architectural design of
the proposed FPGA-accelerated video analytics
framework. The system is optimized for real-time
performance, low power consumption, and
modular integration with [oT-based surveillance
infrastructures. It encompasses a complete
pipeline from video acquisition to deep learning-
based inference and result delivery, all at the
network edge.

3.1 System Overview

In this section, the hardware architecture of the
proposed FPGA-accelerated video analytics
framework will be described, one that will offer
high-performance, energy-efficient, and real-time
processing capabilities and can be deployed in an
IoT-based surveillance system. The system
consists of modular architecture centered on a
pipeline that runs the end-to-end video analytics
capabilities: video acquisition, preprocessing, deep
learning-based inference and distribution of the
result all at the network edge. The system employs
the advantage of parallel processing performance
of the FPGAs to complete the tasks with low-
latency as well as a much lower power dissipation
than when compared to a GPU or CPU based
system. The framework is built in a way that
allows it to work with the rest of the IoT
infrastructure, work with modular inputs,
cameras, edge inference as well as remote
monitoring systems. Such end-to-end edge design
provides the opportunity to perform intelligent
low bandwidth processing through local
processing, to lessen dependence on cloud, and
providing privacy, scalability, and real-time
responsiveness to monitor applications.
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Figure 2. System Architecture for FPGA-Accelerated Edge Video Analytics Platform

3.2 Deep Neural Network Model

The system is based on the use of the YOLOv4-
Tiny, a light convolutional neural network based
on MONAI development, which belongs to the
family of object detectors with YOLO, gathers both
small size and low computational complexity and
has been selected as perfectly balancing the
sensitivity of detection and the speed of inference,
which is a fundamental requirement of embedded
and low-end devices. In order to guarantee further
convenience of the deployment process on FPGA
hardware and improve its performance, a set of
model optimizations are conducted. First, the
model is quantized and stores the weights and
activation data with 32-bit floating points changed
to 8-bit integers (INT8) via the Xilinx Vitis Al
Quantizer. This consumes a much smaller memory
as well as processing requirements but has a

significant proximity to the accuracy of the
original. Afterwards, the quantized model is
compiled with Vitis Al Compiler to convert it to an
FPGA executable format that is optimized to run on
the Xilinx DPUCZDX8G deep learning processing
unit on the Xilinx ZCU104 board. The FPGA DPU
performs the performance-intensive layers (e.g.,
the convolutions or activations), with other tasks,
like computing a softmax or parsing the output,
being left to the onboard ARM processor during
deployment. Such a hardware-assisted
implementation of YOLOv4-Tiny makes it capable
of real-time object detection at the edge with a
low-latency deployment and operation at a very
low power and resource budget, beneficial to real-
time intelligent surveillance and Internet of things
video analytics.
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Figure 3. YOLOv4-Tiny Deployment Workflow on FPGA Edge Platform
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3.3 Dataflow Pipeline

It is further organized in terms of operation
workflow of the proposed FPGA-accelerated video
analytics system into four serial stages that have
been explicitly optimized to permit extremely
minimal latency dependency as well as minimal
usage of resources demands in real-time IoT
systems. Video Frame Acquisition is the initial step
of the process where a camera equipped with IoT
streams frames of the video material at a fixed
frequency (e.g., 30 frames per second) to the edge
device followed by a buffer-like procedure that
allows the video frames to be ingested in real-time.
The second stage, Resizing and Normalization,
resizes the incoming frame to 416 416 input
resolution required by YOLOv4-Tiny model, it
normalizes pixel values and makes them consistent
ofa [0, 1] or [-1, 1] range, which standardizes input
data to ensure a standard model performance. The
ARM host processor on the FPGA platform is suited
to handle these preprocessing steps very
efficiently. Hardware-Accelerated Inference is the
third step that sends the processed frame to the

DPU (Deep Processing Unit) core located on the
FPGA and performs core CNN activities:
convolutions, batch normalization, pooling, and
ReLU activations with extreme parallelism. The
middle feature maps are stored in the on chip
memory, which reduces data traffic time and
improves throughput. The last stage is the Object
Annotation and Output Streaming step, where the
output of the inference, such as bounding box and
a class confidence score, is enhanced with non-
maximum suppression to remove duplicate
detections. The ensuing annotated frames or
detection metadata are either rendered out locally
(e.g, via HDMI) or forwarded to a central
monitoring server that is used to archive and
perform higher level analytics. Such a fast,
hardware-optimized pipeline makes it possible to
support this system to attain inference latencies of
less than 40 milliseconds, thus extending it to
dynamic, latency bound applications in intelligent
surveillance and edge roll-outs using IoT-based
targeting.
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Figure 4. Real-Time Dataflow Pipeline for FPGA-Based Video Analytics

4. Methodology

In this capture, the methodology of the design,
optimization, and implementation of deep neural
network as a solution to deploy real-time IoT video
analytics on FPGA has been summarized.

4.1 Preprocessing and dataset

In order to assess the efficacy and efficiency of the
suggested FPGA-enhanced deep learning system in
real-time video analysis, we used Al City Challenge
Dataset (Track 1) as one of the most popular
benchmarks in the community of intelligent
transportation and urban surveillance affiliates.
This data is particularly designed to represent the
real-life scenario of traffic monitoring at different

intersections and around city buildings thus it is
highly flexible to test object detection and tracking
models under different working conditions.

The data includes high resolution video sequences
(1920 1080 30 FPS) recorded by stationary
roadside surveillance cameras. It includes a variety
of scenes of different congestion of the vehicles,
occlusion, traffic by pedestrians, time of day
(day/night) and the background view. The frames
are each annotated in detail with bounding box
locations and vehicle classes (i.e. car, truck, bus
and motorcycle). The mentioned annotations offer
a strong foundation and ground truths in training
and assessing object detection models.
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Preprocessing Pipeline

So that there are no problems in integration with
the YOLOv4-Tiny deep neural network and to
improve its robustness and adaptability in the
training process, a complex preprocessing scheme
is used on the raw video data. It starts with Frames
Resizing, in which the high-resolution frame
(usually 1920 1080 pixels) are reduced to 416 416
pixels, which is the input resolution of YOLOv4-
Tiny. This resolution is able to save adequate
spatial information in order to derive small and
medium size objects and yet brings with it a
considerable restriction in the computational load
which was also paramount in real-time inference
on the FPGA platforms. After it is resized, RGB
Normalization is applied where pixel intensities
are scaled to a standard range (e.g. [0, 1] or [-1, 1]).
The reason behind doing this step is so that there
is a distribution of the input data that is consistent
with statistical assumptions of the already trained
model hence results in a better convergence
behaviour as well as a better numerically stable
behaviour during training and inference as well.

Data Augmentation techniques are also used in
training in order to better equip the model with
the generalization capabilities, resilience to
variability in the real world. Among these are
random cropping that simulates occlusion of a
portion of an object; horizontal flipping that
introduces symmetry and direction insensitivity;
and brightness and contrast variations that
basically simulate the various lightings that are
mostly seen in outdoor surveillance environments.
Such augmentations provide greater diversity of
scenarios exposing the model to making it more
robust to environmental conditions changes and
optical noise. After normalizing the augmented
frames, they are then passed to the model
quantization and compilation pipeline- a very
important step in preparing a model that is trained
to be deployed on an FPGA. This model gives
confidence that the model can not only be able to
work accurately under many conditions but that
the model will be able to put high demands in size,
speed, and efficiency of real-time video analytics at
the edge.
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Figure 5. Preprocessing Pipeline for YOLOv4-Tiny Training and Inference

4.2 Neural Network Model Optimization

In order to provide an efficient real-time object
detection method capable of operating on
hardware with low access to computations, we use
YOLOv4-Tiny model- an optimized variant of the
original YOLOv4 that can be on real-time and with
minimal loss of performance. It has fewer
parameters and a lower number of layers of
convolution, and it can be considered an optimal

architecture to be applied in a resource-limited
environment such as FPGAs and still perform
similarly in relation to the current recognition of
common objects in video analytics.

The first step is the model training of the YOLOv4-
Tiny which is trained in the Darknet deep learning
framework that provides lightweight C-based
training environment had been especially designed
to fit the YOLO models. The model trains on the Al
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City Challenge dataset in annotated vehicle classes
using stochastic gradient descent and standard
losses to regression and classification of bounding
box regressions and classifications. After the said
model has been sufficiently trained and evaluated,
we go ahead with a set of hardware-specific
optimizations with compatibility to the Xilinx
ZynqUltraScale+ MPSoC (ZCU104) framework and
optimality on the FPGA fabric in mind.

Quantization

In an attempt to decrease the model computational
complexity and memory bandwidth demand, we
quantize post-training with Xilinx Vitis Al
Quantizer. It has the effect of converting the
floating-point weights and activations of the model
to 8-bit fixed-point (INT8). Quantization greatly
decreases model size enabling it to be stored in the
limited amount of on-chip memory the FPGA
provides as well as decreasing arithmetic
operation run time. Specifically, such
transformation is performed without much effect
on accuracy, it will make use of calibration data so
that the fidelity of inference is maintained.

Compilation

Upon quantization, the model is compiled with the
help of Vitis Al Compiler into a format that is
executable by hardware. This step converts the

high-level model structure, into DPU (Deep
Processing Unit) instructions, which are specific to
the Xilinx DPUCZDX8G core being realized on the
ZCU104 board. The compiler will do graph
optimization, layer fusion, memory allocation,
instruction scheduling so that it is well utilized
hardware wise and low latency in execution.

Deployment

The model obtained is then implemented into the
FPGA using the PYNQ (Python Productivity for
Zynq) framework that integrated hardware-
accelerated functions into Python-based edge
applications. The PYNQ running system performs
the transfer of data between the processing system
of the Arm Cortex-A53 and the programmable
logic where the DPU is situated. Preprocessing of
video frames is done at runtime on ARM core and
provided to the DPU to run accelerated inference.
Postprocessing like output formatting non-
maximum suppression is also done through ARM
processor.

This process of three-step optimization pipeline,
quantization, compilation, and deployment, makes
the deep neural network be capable of running in
real-time and expected to consume the minimum
amount of energy and thus fits such environments
like edge-based video analytics in an 10T setting to
a tee.
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Figure 6. Model Optimization and Deployment Pipeline for FPGA-Based YOLOv4-Tiny Inference

4.3 FPGA
Deployment
The last implementation of the suggested deep
neural network (DNN) pipeline is achieved on a
ZC104 reference board based on Xilinx, in which

Implementation and Edge

the combination of high-performance
programmable logic (PL) and a quad-core ARM
Cortex-A53  processing  system  (PS) s
encompassed into a comprehensive
ZynqUltraScale + MPSoC implementation. The
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implication of this heterogeneous SoC architecture
is to feature Agile division of labor to allocate
compute-intensive CNN processes to the layer, and
general-purpose  processes like data and
preprocessing management, as well as the system
control functions.

Overview hardware platform

At the center of the implementation we have the
Deep Learning Processing Unit (DPUCZDX8G)
which is a configurable and highly parallel IP block
that is synthesized as part of the programmable
logic of the FPGA using ravado and the Vitis Al
development stack. The DPU is uniquely optimized
to boost a convolutional neural network (CNN)
inference, and has a wide variety of deep learning
operators including convolutions, pooling,
activation functions, and fully-connected layers. It
runs the quantized model of the YOLOv4-Tiny in a
hardware-accelerated manner, and has very long
inference latency and significantly low power
requirements, compared to CPU or GPU-based
options.

Video Input Integration

Live video streams are recorded by an loT-enabled
camera and buffered to the ZCU104 board using
Ethernet or Camera Serial Interface (CSI), but the
deployment is situational. Input video frames are
stored in a buffer and sent to ARM Cortex-A53 core
where the first processing is done.

Inference and Preprocessing

Preprocessing of the data is outlined in the ARM
processor and incorporates reduction of the size of
input frames to 416x416 and normalizing RGB.

After preprocessing, the image data is passed on to
DPU kernel, which instantiated in the FPGA fabric
conducts CNN inference in real-time.
Communication overhead is low because PS and PL
are integrated in a manner that they share high-
throughput AXI interconnects.

Output and Post processing

The on board ARM processor is ready to process
activities about post-inference processing such as
non-maximum suppression (NMS) to remove
duplicating bounding boxes and label mapping to
allocate class labels. After the processing is
completed, the processed video frames can take
one of two output forms: either they are
broadcasted locally by the HDMI output of the
FPGA board, which allows a real-time visual
feedback and monitoring in a remote location, or
they are send to the cloud servers, in an Ethernet
or Wi-Fi connection, to be stored remote and
processed later with advanced analytics, or
integrated with  higher level data-driven
applications like intelligent traffic systems or
central maintenance security dashboards. The low-
latency and high throughput of this tightly
integrated end to end pipeline is always able to
achieve 30-32 frames per second (FPS) single
inference total latency of approximately 31
milliseconds. Generally, the system is very energy
efficient yet performs so well on the criteria of less
than 5 watts of power on full operational load. This
renders it especially appropriate to resource-
limited edge applications, such as a solar-powered
or battery-driven surveillance infrastructure in
intelligent cities, transportation networks, and
critical infrastructure areas.

loT Camera Optional
Video Input Performance Metrics
Inference Latency 31ms
v Throughput  30-32 FPS
ARM Cortex-A53 Power Consumption <5W
(Processing System) FPGA 'Tput*
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Resize to 416X416 Inteﬁace: DPUCZDXS8 Core |« > /Wl'Fl
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Figure 7. FPGA-Based Edge Deployment Architecture on Xilinx ZCU104 Platform

5. RESULTS AND DISCUSSION
In order to assess the comparative performance of
the recommended FPGA-accelerated deep learning

architecture, we have undertaken a thorough
performance comparison with its performance by
reference to commonly available commercial edge
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Al platforms such as the NVIDIA Jetson TX2,
Raspberry Pi 4 with Intel Movidius Neural
Compute Stick 2 (NCS2), and a baseline standard
Intel i5 CPU based. The evaluation was based on
the most important performance indicators like
inference latency, throughput (frames per second),
power consumption, and accuracy in recognition
expressed in means of Average Precision (mAP) at
an Intersection over Union (IoU) threshold of 0.5.
The Xilinx ZCU104 implementation using FPGA
had an inference latency of 31 milliseconds, giving
the real-time video analytics an upper bound of 32
frames per second (FPS), which is way above the

160
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40

20

ZCU104 (FPGA)

Jetson TX2

real-time range of 30 FPS. Comparatively, Jetson
TX2 achieved 21 FPS, the NCS2 platform could do
little more than 11 FPS and the CPU-only system
was able to do only 5 FPS. The working power of
the suggested system was estimated as 4.5 watts,
which is quite a low number, compared to 7.8
watts consumed by the Jetson TX2, and
significantly more energy-efficient as opposed to a
15.6 watts consumed by the CPU baseline. This
energy efficiency was even accompanied by a
competitive mAP score of 83.1% which was only
slightly lower than the one of Jetson TX2 of 84.5%
and better than that of NCS2 at 79.3%.

FPS
m Latency (ms)
. Power (W)
. MAP (%)

NCS2 + Pi 4 Intel i5 CPU

Edge Al Platform

Figure 8. Unified Performance Comparison of Edge Al Platforms for Real-Time Video Analytics

These findings are important to show the high
trade off made by the FPGA implementation in
terms of energy efficiency, speed of calculations
and detection. System flexibility to provide
consistent performance in real time, using minimal
power, renders it extremely suitable at battery-
operated or sun-energized edges, given an
extempore setting or under material restrictions.
The minimal decrease in accuracy, as compared
with GPU-based solutions, is offset by the large
power efficiency improve and thermal stability.
Moreover, I/0 handling and frame preprocessing
as well as post-inference calculations proceed well

with our ARM Cortex-A53 processor in the
ZyngMPSoC so that there is no need to create the
overall system unresponsive and even create
computing bottlenecks. Future model updates and
the multi-task deployment does not require the
hardware redesign due to the modular and
reconfigurable fabric of FPGA. All these results
confirm the feasibility of FPGA acceleration as a
scalable and resilient scheme of deploying deep
learning-based video analytics at the network edge
to meet the increasing prospects of smart, and low-
latency IoT architectures.

Table 1. Performance Comparison of Edge Al Platforms for Real-Time Video Analytics

Platform Throughput | Inference Power Detection Accuracy
(FPS) Latency (ms) Consumption | (mAP @ IoU=0.5)
W)
ZCU104 (FPGA) 32 31 4.5 83.1
Jetson TX2 21 48 7.8 84.5
NCS2 + Pi 4 11 85 5.2 79.3
Intel i5 CPU 5 160 15.6 75.2

6. CONCLUSION

This study proposes a low power, energy efficient
and scalable FPGA-based edge computing plug and
play architecture that is susceptible to real-time
video analytics in IoT enabled condition. Through

the Xilinx ZynqUltraScale+ MPSoC platform, which
allows us to take advantage of parallel processing
capabilities and deal with reconfigurability, we
were able to deploy a quantized version of the
YOLOv4-Tiny model that performs high-
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throughput object detection with low latency and
power consumption. The experimental outcome
indicates that the presented solution will be able to
achieve lower latency and energy consumption
than conventional solutions based on the CPU and
GPU-based edge Al solutions, and still provide
competitive accuracy. Its capacity to consistently
work above 30 FPS with energy budget less than
5W renders it highly feasible to utilize in smart
urban areas, smart traffic and monitoring in
industry, where fast decision-making based on low
latency is utmost. Moreover, the chip architecture,
that is, a tightly coupled ARM processor and a
FPGA fabric, dividing is easily dynamic partitioned
and upgrades to a model easy due to hardware
abstraction. The paper provides a basis on which
future development of edge Al systems, such as the
implementation of more sophisticated DNNs and
multi-FPGA  distributed systems, and their
integration with federated learning libraries so as
to enable adaptive, privacy-preserving model
retraining in the edge, will build. With the
increasing demand towards intelligent, responsive
and autonomous IoT systems, the FPGA-enabled
framework implemented in this paper provides a
great insight on how high-performance Al can still
be met without any energy or deployment
limitations.
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