Electronics, Communications, and Computing Summit

\ol. 2, No. 4, Oct - Dec 2024, pp. 99-104

ISSN: 3107-8222, DOI: https://doi.org/10.17051/ECC/02.04.13

Deep Reinforcement Learning-Based Beam Selection and
Tracking for Energy-Efficient mmWave Beamforming in 6G

Networks

P Kalaivnai?, R. Prashanth?

1Assistant Professor, Department of Computer Science and Engineering, Kongu Engineering College,
Email: kalaivani.pachiappan@gmail.com
2Assistant Professor, Department of Artificial Intelligence and Data Science, T]S Engineering College,
Peruvoyal, Email: rprashanthme1994@gmail.com

Article Info

ABSTRACT

Article history:

Received : 10.10.2024
Revised :12.11.2024
Accepted :14.12.2024

Keywords:

6G Wireless Networks,
Millimeter-Wave (mmWave)
Communication,

Beamforming, Beam Tracking,
Beam Selection,

Deep Reinforcement Learning
(DRL),

Proximal Policy Optimization
(PPO),

Energy Efficiency,

Intelligent Beam Management,
Actor-Critic Algorithms,
Mobility-Aware Beamforming,
Markov Decision Process (MDP),
Smart Antenna Systems,
Directional Communication,
Adaptive Beam Control.

Millimeter-wave (mmWave) communications are anticipated to be
highly significant to the sixth generation (6G) wireless networks
because of the ultra-high data rate provided by the mmWave
communications. Yet, conventional mmWave bands have a high path loss
and mobility sensitivity, which implies incessant and precise beam
alignment, which is an immense feat in dynamic settings. In this paper,
the framework of an energy-efficient beam selection and tracking
framework in 6G mmWave systems based on deep reinforcement
learning (DRL) is presented. The beam management process is
expressed as a Markov Decision Process (MDP) and a Proximal Policy
Optimization (PPO) agent is deployed to learn an optimal policy of
controlling the beam in real-time. The proposed DRL agent uses the
information of both channel states feedback and user mobility to choose
adaptively the beam directions without the need of carrying out a beam
search exhaustively or using a fixed codebook. An optimal reward
function, which is specific to the environment of the robot, achieves a
tradeoff of signal quality and energy consumption to deliver a confident
beam alignment alongside minimal overheads. The simulations done
extensively over a wide range of mobility conditions show that the PPO-
based strategy gets up to 30 percent savings in energy and 95
percentage of beam alignment accuracy when compared to the existing
schemes, exhaustive search and location-based beam-forming. All these
findings confirm that intelligent beam management will be a viable
method of increasing the energy-efficiency and reliability of 6G
mmWave communications. The suggested framework provides the main
reference to mobility-oriented scalable beamforming within the future
of wireless networks.

1. INTRODUCTION

beams is therefore needed in order to support

The realization of the sixth generation (6G)
wireless networks promises to offer ultra-high
data transfer rates, giant connectivity, and zero-
latency. Millimeter-wave (mmWave)
communication has been identified as one of the
critical components to support such far-reaching
performance targets as it exploits the wide spectra
availability in the 30 GHz-300 GHz band.
Nevertheless, mmWave signals are by nature very
directional and susceptible to path loss, blockage,
and fast channel fluctuations caused by the
mobility of the users and dynamic of the
environment. Real-time selection and tracking of

reliable and efficient mmWave connectivity [1].
Traditional beam management algorithms are
taxing on computation efforts and use of too much
signaling that are inappropriate in conditions of
high mobility where excessive signaling is used.
Simple types of static beamforming schemes
cannot adapt to changing channel conditions and
user dynamics. Such shortcomings explain the
necessity of smart and adaptive beam forming
schemes that can learn an environment, and make
decisions based on contexts.

In continuation with the theme of this paper, we
would like to introduce Deep Reinforcement
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Learning (DRL) framework to the beam selection
and tracking in dynamic 6G mmWave systems. The
balancing between the beam control and signal
alignment process is modelled as a Markov
Decision Process (MDP) and a Proximal Policy
Optimization (PPO) agent performs the learning
task of beam selecting a policy that takes
maximum signal alignment at minimum cost on
time and switching. As compared to supervised
techniques which utilize labeled data, the proposed
DRL technique keeps up with the variations in the
channel and mobility settings without a
comprehensive search. An experiment of
simulation results reveals that the framework
shows the capacity to save up to 30 percent energy
and keep the energy and beam alignment accuracy
beyond 95 percent as compared to the traditional
baseline and the learning-based baseline. This
shows the possibilities of DRL concerning the
scalability and adaptability problems about the
beam managements on 6G networks.

2. Related Work

In the current context of artificial intelligence (Al),
the adoption of learning-based strategies in
facilitating beam management in mmWave and 5G
networks has brought a lot of curiosity. Internet
beams have also been predicted in supervised
learning [1], [2] with features like Channel State
Information (CSI) fingerprints and location of
users. In addition to making more accurate
predictions with a static state, the methods have
the large drawback of needing large labeled
training sets and flexibility to unseen or dynamic
network conditions. In order to address these
shortcomings, scholars have considered the
potentiality of Reinforcement Learning (RL)
solution in terms of Q-learning and Deep Q-
Networks (DQN) to optimize adaptive decisions in
the context of beamforming concepts [3], [4].
Though they are quite capable in discrete action
spaces, these methods are limited by not scaling
well, or converging, in high-dimensional
continuous spaces like in the case of real-time
mmWave systems with massive codebooks. Also,
Q-learning based agents are subject to overfitting
and instability in rapidly shifting mobility
conditions. Actor-critic mechanisms have become
popular in order to enhance policy robustness.
Specifically, exotic actors, such as Advantage Actor-
Critic (A2C) and Proximal Policy Optimization
(PPO) have shown to be more sample-efficient and
it trains more stably in the dynamic setting [5].
Nonetheless, the majority of what has been
developed fails to consider the problem of joint
beam selection and tracking on an energy-
constrained basis, and they say nothing about its
real-time flexibility in a high-mobility scenario in
6G.

With the purpose of mitigating these difficulties,
this paper suggests a DRL-based PPO that would
acquire an optimal beam control policy utilizing
energy-efficient and mobility-conscious beam
alignment. As opposed to the previous approaches,
our solution allows tracking the beams in real-time
without cumbersome search to minimize energy
and still maintain the dependable communication
associations in 6G mmWave systems.

3. System Model

We suppose a one cell millimeter-wave (mmWave)
6G wireless system, in which a base station (BS)
with a uniform linear antenna array (ULA) sends
information to a mobile user using a directional
beamforming approach. The BS also will be
considered to use only one radio frequency (RF)
chain and wuses a pre-specified discrete
beamforming codebook, which is represented as B.
At the codebook in the codebook are associated
with a particular set of angular directions.

The system utilizes a time-slotted network
architecture (via a deployment of the time division
multiple access sub-network); in the course of
which, within any given slot, the BS is required to
choose the most appropriate beam index out of B
to suit the transient wireless channel conditions
and the mobility of the users.

3.1 Channel Model

We use geometric line-of-sight (LOS)-dominant
mmWave channel model correspondent to a low
degree of scattering. The link between the mobile

user and the BS is a narrowband channel.
L

h = Z aaBsS(0) - - - - - - - ———————
Y CY

where:
¢ L denotes the multipath components (which
is usually small mmWave),

e where & Does alpha denote the complex

path gain of the 1-th path?
e angl is the angle of departure (AoD)
e aBS(thl ) is the array response vector of the
BS at AoDth 1.
It is such a formulation which can reflect the
angular sparsity of mmWave propagation,
reflecting that only a small number of strong paths
are dominant contributors to signal power. The
array response aBS(0) of a ULA having N antennas
spaced at a half of the wavelength is generally
expressed as:

1
ags(0) = \/_N

[1, e—j'r[ sin (0),
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3.2 Energy Consumption Model

In mmWave systems with high frequent

communication, energy efficiency is a priority

system design factor owing to the prolonged price

of RF circuitry and beam control overhead. Total

energy consumed per decision step is defined by

us to be:

E = Etx + Ealign +Eswitch __________

--3

where:

. E is the transmission energy, the energy of
which is a function of the beam that is chosen
and the SNR needed to keep the link reliable,

Directlona-
Beam

Ejign includes beam alignment overhead:
usually this comes in during beam
training/beam scanning,

. Eqwiten iNcCorporates the power consumption
penalty of beam-to-beam switching such as
control signaling penalties and potential re-
configurable hardware delay penalties.

Through this model of energy, the beam

management policy is able to consider the both

performance and efficiency of communications and
achieve a balanced optimization on the part
between throughput and the power consumption.

This interrelationship between the base station,

directional beams and user mobility is shown in

Figure 1.

Codebook B

A A A

W
Mobile User

Figure 1. System model for beam selection and tracking in 6G mmWave networks.

The figure consists of a base station (BS) with the
uniform linear antenna array that supports a
narrow broad communication with a mobile user.
The BS chooses one of the beams in a discrete set
trying to consider the channel changes caused by
the movement and the energy consumed in
transmission, alignment, and switching process.

4. Proposed Method

As the beam selection problem in dynamic
mmWave 6G environments will require smart
decisions going forward to increase energy
efficiency and facilitate adaptation, we model the
problem as a Markov Decision Process (MDP) and
solve it with the help of Proximal Policy
Optimization (PPO), an efficient on-policy deep
reinforcement learning algorithm. The PPO
framework helps the Ilearning agent take
sequential decisions on beamforming to achieve a
balance between the quality of signals and the
energy expenditure as well as the changing
channel.
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4.1 MDP Formulation

The beam selection and tracking process is
modeled as an MDP defined by the tuple (S,A,R,Ty),
where:

e State (st€S): The state at time step ttt includes

relevant environmental features such as:

The existing beam index adopted by the BS,
Approximated angle of departure (AoD),

A user mobility vector (velocity heading),

An abridged history of received signal
strength indicator (RSSI)

Action (a;€A): The action corresponds to selecting
a beam index from the beamforming codebook B.
This decision determines the directional
transmission strategy in the next time step.

e Reward (r): The reward function balances
received signal strength and energy efficiency,
and is expressed as:

r. =a.SNR, - B.E,—F—————————
-——®
where a and 3 are tunable scalar weights, SNR; is
the signal-to-noise ratio after beam selection, and
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E; is the total energy consumed (as defined in
Section 3.2).

e Transition: The environment dynamics follow
user mobility, causing changes in AoD and
channel gains over time. These are simulated
based on mobility models and mmWave
propagation characteristics.

e Discount Factor (y): A value in the range
0.95<y<0.99 is used to prioritize long-term
cumulative rewards over immediate gains,
supporting stable policy development over
sequences of decisions.

4.2 PPO Agent Architecture

The learning agent is created based on the actor-

critic structure that is used in PPO, which is

composed of two major neural networks:

e Actor Network: The given network produces a
probability assignment on the discrete codes of
the beam in the codebook B. A beam is
randomly sampled at every-during the training
phase- time step in order to promote
exploration.

e Critic Network: Critic network estimates the
state-value function of V(st), that is the
expected cumulative reward of a state with
state under current policy. It also controls the
actor network by acting as a guideline to help it
assess the benefit of the options of actions
chosen.Objective of Training: PPO is to optimize
a clipped surrogate objective function that
constrains policy updates to keep it in a trust
region and leads to a stable convergence. The

aim is:
LPP0 (0) = E,[min (r,(0)A,, Clip (r,(0),1—€, 1+
S ®)
Wherer,(0) = M@)o the probability ratio

m0o14 (atlst)
between new and old policies, and A is the

advantage estimate, computed using Generalized
Advantage Estimation (GAE) to reduce variance
while preserving bias control.

The formulation allows the agent to discover a
beam choice policy that is most reliable and least
energetically costly over a communication channel,
which in addition, becomes responsive to the
dynamics of mobility as well as environmental
uncertainty, in a real-time manner.

5. Simulation and Results

In order to assess the performance of the
suggested DRL-based beam control scheme, we use
a dynamic mmWave 6G scenario with mobility and
practical channel circumstances. The simulation
compares the proposed Proximal Policy
Optimization (PPO) agent with the traditional and
learning based bench mark using measurements in
beam alignments and energy efficiency.

5.1 Simulation Setup

The most important simulation parameters have

been summarized as below:

e Carrier Frequency: 28 GHz which is a
common mmWave 5G/6G operation band

e Antenna Placement: Uniform Linear Array
(ULA) having 64 elements on the base station

e User Mobility: The speed of users is variable
in the order of 5-20m/s

¢ Beamforming Codebook: discrete codebook
with 32 directional beams

e Bandwidth of the Channel: 100 MHz

e 2 Baseline Comparisons:

e Exhaustive Beam Search:This searches
through all beam directions within in the
codebook

¢ Location-Based Beamforming: The beams are
chosen according to user location
determination

e Deep Q-Network (DQN): Q-learning-trained
deep reinforcement learning agent that learns
beam selection

All models are compared and tested across a
number of simulation episodes to make the test
statistically consistent. mmWave propagation
regime combines line-of-sight (LOS) dominant
channels, which vary in angle because of user
movement.

5.2 Performance Metrics
The efficiency of the suggested procedure is
assessed by the following indicators:

e Beam Alignment Accuracy (%) -Ratio of time
that the chosen beam is aligned with the ideal
beam direction with respect to instantaneous
channel conditions.

e Energy Consumption (Joules): Accumulated
energy of the system with cost of
transmission and alignment and switching of
beam costs, as already defined in Section 3.2.

e Beam Switching Rate (per second): The rate
of switches between beams, this shows the
stability of a system as well as its
responsiveness.

e Average Signal-to-Noise Ratio (SNR in dB): An
average quality of the links during the
simulation period.

5.3 Results Summary

According to the results of the simulation, it is
possible to note that the proposed PPO agent
shows higher performance in all essential metrics.

As demonstrated in Figure 2, the strategy based on
the PPO reaches the beam alignment accuracy of
95.3 percent, which is much higher than the
average police part of DQN (85.7 percent) and
location-based beamforming (85.1 percent) and
proves the effectiveness of this strategy in
overcoming the dynamics of users.
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Regarding the level of system-level energy
performance, the figure 3 illustrates that PPO cuts
the total energy loss by nearly 30 percent as
compared to the exhaustive search as a result of
smart beam reuse and decreased alignment cost.

Compared with PPO as shown in Figure 4 PPO has
lower beam switching rate showing a smoother
stable  tracking  behaviour with limited
reconfiguration under high-mobility conditions.

Figure 2:Beam Alignment Accuracy (%)
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His last figure (Figure 5) shows that PPO achieves a
high and stable average SNR, which is as good as it
is in the case of exhaustive search, but with less use
of energy and control resources.

All these findings confirm that the suggested DRL
framework based on PPO can perform real-time,
robust, and energy-aware beam management and
provides a scalable tool to enable the intelligent
beam control in 6G mmWave systems.

Figure 3: Energy Consumption (Joules)
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Figure 2. Beam Alignment Accuracy (%) - PPO achieves high accuracy near optimal (95.3%) with
minimal misalignment.
Figure 3. Energy Consumption (Joules) - PPO reduces total energy usage by ~30% compared to
exhaustive search.
Figure 4. Beam Switching Rate (per second) - PPO demonstrates smoother beam control with
significantly fewer switches.
Figure 5. Average SNR (dB) - PPO maintains strong link quality, comparable to exhaustive methods

6. CONCLUSION AND FUTURE WORK

It has proposed a Deep Reinforcement Learning
(DRL) paradigm of Proximal Policy Optimization
(PPO) to carry out adaptive beam selection and
tracking in energy-constrained 6G millimeter-wave
(mmWave) networks. The proposed approach
allows a learning agent to choose the best
beamforming directions in real-time due to
environmental feedback, channel conditions and
mobility patterns by modeling the problem to a
Markov Decision Process (MDP). The agent
succeeds in a tradeoff between the accuracy of
beam alignment and energy requirements by
outperforming conventional baselines like DQN,
location-based algorithms, and beam search,
exhaustive search.

Auxiliary simulations illustrate that the PPO-based
policy can save up to 30% of the energy
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consumption and achieve the alignment accuracy
of the beam within the range of 95% and higher,
and it can be a potentially powerful real-time
policy to be implemented in smart 6G access
networks. The integration of beam selection and
energy-aware decision-making is part of the
reason that the system-level performance will be
improved with user mobility and channel
variation.

As a line of further research, it is hoped that the
present investigation can be extended in a number
of ways:

e  Multi-user Beam Management: Extensions to
cover simultaneous management of multiple
users having conflicting spatial requirements
and a sharing RF resource.

¢ Joint Beamforming Power Control: Combining
the beam direction control decisions with

103



P Kalaivnai et al / Deep Reinforcement Learning-Based Beam Selection and Tracking for Energy-Efficient
mmWave Beamforming in 6G Networks

adaptive transmit power control with aims

towards end-to-end energy-performance
optimisation.

e Reconfigurable Intelligent Surfaces (RIS):
These reconfigurable intelligent surfaces

introduce RIS-aided propagation into the
scenario to increase signal steering and
blockage’s ability.

¢ Hardware-Aware Learning: Emerging
lightweight and quantization-invariant
learning models that can be deployed in an
energy efficient edge hardware with low
latency inference requirements.

These guidelines are meant to improve the

scalability, robustness, and deployability of the

intelligent beamforming systems in the next-

generation of mmWave-based 6G networks.
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