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With the integration of physical infrastructure with a state of the art
computational intelligence, Cyber-Physical Energy Systems (CPES) have
become a revolutionary paradigm in modern power grids. They are
however complex and this makes them easily subjected to errors in
diagnosis when their symptoms should be treated as quickly as possible.
The research would develop a new framework of predictive fault
diagnosis that integrates the features of big data analytics and deep
learning which would improve system reliability and responsiveness.
The architecture that is suggested consumes heterogeneous sensor data
of smart meters, substations, and SCADA systems that are based on
Hadoop Distributed File System (HDFS) scalable storage and Apache
Spark Streaming real-time processing. These are more advanced feature
engineering methods, represented by statistical aggregation, Fast
Fourier Transform (FFT) and wavelet transforms, that are executed
before inference of the model. The trained hybrid Convolutional Neural
Network-Long Short-Term Memory (CNN-LSTM) can be used to predict
fault types and estimate to time-to-failure (TTF) using historical fault-
labelled data. However, compared to the preceding models, the
proposed framework does not merely combine deep learning with big
data infrastructure at a level that creates a real-time feedback loop, but
allows wide-ranging, flexible deployment about CPES environments.
Experimental analysis of a simulated IEEE 14- bus test system and over
1TB of real-world smart substation data indicates a fault detection
range of 97.3 per cent and an average event latency of less than 3
seconds per fault that is far superior to standard Random Forest and
Support Vector Machine (SVM) methods. These findings emphasize the
effectiveness of the framework in enhancing the accuracy of fault
classification, lower response time, and engage in proactive
maintenance. The development of edge federated learning, explainable
Al and deployment in hybrid edge cloud architecture is a future
direction to further realise the capability to predict in distributed CPES
environments.

1. INTRODUCTION

rules algorithms, thresholding methods or plain

A global shift toward the cleaner smarter energy
infrastructures has given rise to the Cyber-Physical
Energy Systems (CPES) a smart combination of
physical energy systems and computational
systems interacting via sensors, actuators and
control devices [1]. These systems are essential in
the real time energy optimization, demand-side
management, and integrating distributed energy
resources. Nevertheless, they are becoming more
complex leading to new challenges in making them
reliable in operations and resilient to faults. Faults
in CPES may be caused by numerous things,
including hard wear;, communication-delays,
power-variation and cyber-attacks. The popular
methods used to diagnose faults are based on the

statistical models, which cannot cope in scaling
with the high-dimensional, multi-modal, and time-
varying nature of the energy systems of the
modern time [2], [3]. Also, these solutions tend to
be reactive and not predictive: they imply more
downtimes, decreased efficiency of operations, and
impaired system safety.

With the vigorous development of catalytic big
data computing using scalable frameworks,
including Hadoop and Apache Spark, there have
emerged new opportunities in the capability to
process large amounts of streaming sensor and
event data [4]. Meanwhile, deep learning
classifications such as Convolutional Neural
Networks (CNNs) and Long Short-Term Memory
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(LSTM) networks exhibit significant potential in
the area of learning of complex patterns and fault
signatures in dynamic environments [5], [6]. Many
of these technologies do not have a cohesive
structure describing how big data infrastructure
can be incorporated into the existing deep learning
model with lossless flow of such information. The
great majority of the previous initiatives perceive
data ingestion, feature extraction, and model
training as separate processes that do not consider
real-time requirements, scalability in distributed
systems, and feedback incorporation into
operational control levels [7]. A qualifying
architecture should be urgently developed to fill
this gap to allow a data-driven prediction of faults
in many CPES settings as an end-to-end process.

In order to overcome these drawbacks, the

proposed paper introduces a hybrid solution to

diagnosing faults in CPES to enable their
precarious and precise prediction using big data
pipelines coupled with deep learning solutions.

There are three contributions of this work mainly:

e A real-time big data-driven data ingestion,
analytics and storage platform to hold
heterogeneous data of CPES.

¢ Pipe-line using deep learning architecture
comprising of, both CNN and LSTM, that can
learn the spatial and temporal fault signature.

e A synthetic and real-world smart grid data

with experimental validation and high
accuracy in fault detection and responsiveness
of the system.

The rest of the paper is structured as follows:
Section II reviewed the related work; Section III
covers the proposed system architecture; Section
IV shows the experimental setup and results;
Section V covers the implications; and finally,
Section VI concludes and shows future research
directions.

2. Related Work

Use of machine learning (ML) methods on power
system fault diagnosis has received a lot of
importance recently. Earlier works are mainly
based on conventional models that include Support
Vector Machines (SVMs), but which are strongly
biased towards the use of hand-designed signal
attributes, and have limited generalization
properties with high-dimensional real world data.
As Xiao et al. [8] made use of SVMs in the
classification of fault signals, their method was
found to scale poorly and perform poorly on
multivariate, high-volume data found in a typical
smart grid. [9]Akgun et al. used LSTM networks to
do load forecasting and demonstrated that
temporal sequence models are powerful. But their
deployment does not have any integration with
real-time streaming analytics, which is an essential
element to successful fault mitigation in fluxing

environments. [10]Explored applying Apache
Spark together with Random Forests (RF) to large
scale classification problems. Although this
paradigm enjoys the distributed processing
advantage, it fails to deliver the representation
power of the deep neural nets. Deep learning:
Recently, the technique of deep learning has been
highly promising in fault detection and anomaly

classification, especially using Convolutional
Neural Networks (CNNs), LSTMs, and
Autoencoders.  Nevertheless, a  completely

integrated framework that combines scalable big
data processing platforms and advanced deep
learning models in a one-stop end-to-end solution
that can be used to diagnose fault in CPES in real
time, however, remains a gap in the literature.

This gap has been even greater with the expansion
in the usage of distributed energy assets and edge
devices. Some research in the area is still emerging
in 2023 2024 (e.g, [11], [12]), which have begun
implementing federated learning and neural
networks deployed at the edge, but there are no
instances of fully realized architectures that are
capable of supporting real-time analytics, feedback
control integration and adaptive learning. Hence, it
is urgent that an integrated and scaled architecture
is embraced to promote real-time and intelligent
fault prediction on geographically disperse CPES
components.

3. System Architecture

The suggested framework combines real-time data
ingestion, scalable big-data processing, inference
based on deep learning and feedback control in a
unified pipeline of fault diagnosis in Cyber-Physical
Energy Systems (CPES) via prediction. This system
contains four key layers as shown in Figure 1.

3.1 Data Acquisition

Data acquisition Layer is a function of acquiring
time-synchronized measurements of several
sources in the CPES infrastructure. Some of the
sources are smart meters, transformers,
substations, and Supervisory Control and Data
Acquisition (SCADA). The data gained includes
voltage and current waveforms, harmonic content,
thermal measurements and conditions of
operation. This ultra-high-resolution multi-modal
sensor data is shared in the real-time with secure
communication protocols and establishes the basis
of downstream analytics.

3.2 Big Data Processing Layer

It is a layer involving the provision of the storage,

pre-processing, and transformation of a large-scale

streaming data through a powerful big data

environment.

e  Storage: The Hadoop Distributed File System
(HDFS) delivers high-throughput ingestion
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and row and processed sensor data, with
fault-tolerant scaling among a cluster of
computing nodes that accommodate
applications in batch analytics.

e  Stream Processing: Apache Spark is also used
with Streaming which can perform real-time
processing of data, allowing low-latency
event-processing. It is effective in use of
micro-batch processing on the live data feed,
which can fit well in early anomaly detection.

. Feature Engineering: Raw sensor data is
converted into useful feature vectors by a mix
of statistics (aggregations such as mean and
standard deviation), FFT (spectral analysis)
and wavelet transforms (localized and
durative details). These attributes are the
input into the learning model.

3.3 Deep Learning Model

The main architecture is a hybrid between a CNN-
LSTM architecture that will capture spatial and
temporal information in the given input.

e  Model Selection: CNN layers extract local,

waveform and harmonic signature, whereas
LSTM layers capture time-strata that include
changes in the dynamic of faults with time.

e Input Features: Structured sequences of
feature vectors of voltage, current, total
harmonic distortion (THD), and temperature
sensors are fed to the model and maintaining
the frequency-domain and the time-domain
characteristics.

e  Training: historical fault-labeled datasets are
used to train the model, and training is
accelerated with the help of GPU-enabled
TensorFlow. This enables an efficient
optimization of the deep architectures over
large data.

e Output: The model creates predictions of the
fault probabilities of several pre-determined
fault classes (e.g., line-to-ground, transformer
overheating) and estimates of the Time-to-
Failure (TTF) through latent regression,
which is able to determine the Time-to-
Failure (TTF) which facilitates proactive
measures.

spatial features, including anomaly in
5 - g — N )
Data Big Data Deep Learning Feedback and
Acquisition Processing Layer Model Control Interface
Sensor Data » Storage: HDFS * Model Choice: The system
o Hybrid CNN-LSTM interfaces with
<P + Stream :
ﬁ; Processing  Input Features: SCADA o ssue
Smart meter Trangformer Apache Spark Voltage, current, alerts and support
pacne op Rarmorts - automated
A Streaming bl foat
||E|| E% distortion, MIHgAuon
+ Feature Engineering thermal data strategies
Seon SCADA Statistical + Training: Historical
aggregation, FFT labeled fault data
wavelet transform using GPU-
SCADsytems accelerate Tensorflow
\ \ J X ) \ J

Figure 1. Proposed Big Data-Deep Learning Fusion Architecture for Predictive Fault Diagnosis

The features of this architecture are the inclusion
of four fundamental elements, which are in real
time acquiring different types of data:
heterogeneous CPES, such as smart meters,
transformers, substations, SCADA devices scalable
big data processing based on HDFS and Apache
Spark Streaming algorithms (e.g., hyperparameter
tuning), a hybrid CNN or LSTM deep learning
model trained on historical labeled data, fault
prediction and classification (e.g, fault
identification and time-to-failure estimation) and

an interface needed to provide the feedback into
the SCADA system that allows delivering the
automated mitigation.

3.4 Feedback and Control Interface

Bi-direction interface between analytics engine
and operational control layer is created by this
module. When the fault is detected, or when the
TTF threshold is exceeded, the system creates the
alerts that are forthwith signaled to the operators
through SCADA. Under automated arrangements,
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predetermined mitigation actions (transformer
load balancing, circuit isolation or demand
response) may be activated by the system. Such
feedback loop in real-time makes the predictive
insights viable not just in terms of action, but also
into the operational decision making cycle of CPES.

4. Experimental Evaluation

In order to evaluate the efficiency of the suggested
framework, Synthetic and real-life experimental
datasets were used. The hybrid CNN-LSTM was
tested under regular machine learning classifiers,
Random Forest (RF) and Support Vector Machine
(SVM) with classical classification evaluation
parameters: accuracy, precision, recall, Fl-score
and latency inference. A paired t-test was also
adopted to test the significance of CNN control-
LSTM results with the ctrl-LSTM as the base.
Confusion matrices represented in Figure 2
indicate that unlike RF and SVM classifiers, the
CNN-LSTM model had a higher true positive rate in
addition to fewer false negatives, representing a
high sensitivity to fault conditions. The results are
represented in Figure 3, with CNNLSTM achieving
the highest accuracy of 97.3 per cent, precision of
0.96 and recall rate of 0.94 which is higher than
that of RF and SVM by 5.7 per cent and 12.1 per
cent of accuracy, respectively. The pair t-test
results show a statistically significant difference
between these difference at p < 0.05. As Figure 4
shows, the lowest average latency (2.8 second per
event) was also realized by CNN LSTM, which
proves that the model can be implemented in real-
time in CPES applications.

4.1 Dataset

Two datasets were used to train and assess;

IEEE 14-Bus Synthetic System: A synthetic dataset
was created by the IEEE 14-bus standard test
system. It contains time synchronized voltage,
current and total harmonic distortion (THD) and
temperature at normal and faulty times. The

present dataset enables carrying out controlled
experiments on a diverse set of fault types with
their different levels of severity, which allows
evaluating the model at a fine-grained level.
Real-Word Smart Substation Data: More than 1 TB
of operational data were gathered in a smart
substation setting during six months. The
information is made up of SCADA logs, PMU
signals, faults waveforms, transformer
temperatures, and grid statuses. The data was also
run through extensive preprocessing pipeline,
before training:
e z-score standardization of signal normalization.
e Temporal Interpolation of the missing values.
¢ Time-series windowing by a sliding window
method.
¢ Noise Filtering low-pass Butterworth filters to
maintain fault features and filter-out high-
frequency noise.
This kind of preprocessing guarantees its stability
and stability both in training and in the assessment
phases

4.2 Performance Metrics

The evaluation metrics used to define the

effectiveness of models were the following:

e Accuracy: A proportion between the number of
correctly predicted states of fault and the total
amount of events.

e Precision & Recall: evaluation of how well the
model reduces false positive and false negative
respectively.

e F1-Score: Harmonic mean of the precision and
the recall which can be applied to performance
measurement on unbalanced data.

e Latency: The average seconds that will take the
data ingestion to fault prediction output.

CNNLSTM-based model exhibited better

classification accuracy and much reduced latency

than the baseline-based models as shown in Table

1.

Table 1. Performance Comparison of Fault Diagnosis Models in CPES

Model Accuracy (%) | Precision | Recall | Latency (s)
CNN-LSTM 97.3 0.96 094 |28
Random Forest (RF) 91.6 0.88 0.87 4.2
Support Vector Machine (SVM) | 85.2 0.84 0.82 5.1

These findings justify successful performance of

deep temporal-spatial feature learning and
distributed stream analytics predictive fault
diagnosis. Besides being more accurate in

diagnostics, the CNNLSTM model satisfies the
conditions of real-time inference, so it can be used
in modern CPES infrastructures as an effective
solution to proactive fault mitigation.
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Figure 2. Confusion matrices for CNN-LSTM, Random Forest, and SVM models on fault classification.
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Figure 4. Inference latency comparison of different models for fault prediction in CPES.

5. DISCUSSION

Experimental results ensure that the proposed
architecture facilitates in real-time and high-
accuracy of fault detection in Cyber-Physical
Energy Systems (CPES). It has been demonstrated
that the combined application of big data
infrastructure, based on the use of technologies
such as Hadoop and Apache Spark, and deep
learning models (such as CNN-LSTM) effectively
increases the quality of data ingestion, processing,
and analysis of huge volumes of potentially

heterogeneous data streams in a system. This
integration does not only lower latency time of
inference (2.8sec/event), but also lowers false
positives  thus enhancing overall system
responsiveness and reliability of its operation.

The architecture is scalable and versatile that
enables its distributed deployment among
substations and transformers and regional control
centers. It has easy interconnection with SCADA
systems and can trigger operator alarms and
unman operated actions on a control based on an
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identified fault. Besides, the framework supports
online learning mechanisms, which enable part of
the model to be updated over time as new
information can be acquired. In the present
implementation, retraining is automatically
activated due to two events (i) regular updates of
the model computed every week according to the
new annotated data; (ii) triggering events, which
activate the retraining system in response to
feedback or massive changes in data distribution

(concept drift). This makes the model to be

resilient to changing grid dynamics and new fault

behaviours.

Although these counting forms have these

strengths, there are some challenges that have to

be resolved to deploy properly in practice:

e Data Imbalance: In most cases, fault situations
in the presence of normal running conditions
are very imbalanced. This affects the learning
algorithm, and especially to the low frequency
already important fault types.

¢ Labeling Complexity: To label with sufficient
quality, one must collect the proper labels with
operational systems, which is labor-intensive
and in many cases will need expert labeling or
after-event analysis, frustrating the scaling of
the supervised learning pipeline.

e Model Interpretability: Though deep learning
models can be used to generate predictive
accuracy that is better, they are not transparent.
It is important to improve the explainability to
guarantee operator confidence and assistance
in safety-critical decisions in the CPES
environment.

As a way to address these shortcomings, in the

future, one will attempt to integrate semi-

supervised and self-supervised learning methods
into the system in order to utilize unlabeled data.

Moreover, the explainable AI (XAI) techniques

including the attention maps and SHAP values will

be explored to increase the model interpretability.

The construction of a pipeline on automated

labeling systems and active learning systems can

also minimize the manual work during model
updates.

6. CONCLUSION AND FUTURE WORK

This paper proposes a new, integrated model,
which combines big data analytics with deep
learning prediction frameworks in an approach to
diagnostic fault prediction in Cyber-Physical
Energy Systems (CPES). Through the scalable
storage and stream processing platforms such as
Hadoop and Apache Spark and hybrid CNN LSTM
architecture, the proposed system demonstrates
high classification performance and low-latency
inference that would fit well in the smart grid
scenario in real-time deployment in the smart grid
scenario. The validity of the approach to detecting

faults proactively by the proposed system based on

synthetic datasets as well as real-life data is proven

experimentally with a slight number of false
positives and the great level of responsiveness.

The modular scalable nature of this framework can

be distributed both across substations and control

centers as well as online learning that provides the
ability to constantly adjust to different fault
patterns. In addition to its technical performance,
the architecture directly assists such integration to

SCADA systems and enables feedback control in

real time, the missing link between analytics and

respondable control of the systems.

In the future, there are a number of directions that

will be undertaken to further improve the

robustness, the scalability and the interpretability
of the system:

e Federated Learning: As far as we have
investigated, existing fault diagnosis systems in
CPES use federated learning very seldom to
train a model in a decentralized setting.
Application of this method to all substations
will allow collaborative learning without
centralizing raw data (avoids privacy as well as
bandwidth limitation).

e Explainable Artificial Intelligence (XAI): the
transparency of the model achieved by making
the model outputs explainable (e.g., attention
mechanisms, SHAP values) will help the
operator gain trust and acceptance by
regulators in safety-intensive use cases.

e EdgeCloud Hybrid Designs: By embedding the
system into a distributed edgecloud range, the
low-latency inference of the edge plane can be
balanced with high-capacity model training in
the cloud, to allow it to scale across utility
networks.

These guidelines shall enhance the technological

maturity and deployability of the framework on

the scale of the industrial CPES platforms,
facilitating the next generation resilient and
intelligent energy systems.
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