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 Adding electric vehicles (EVs) to smart grids brings issues with handling 
peak energy demand and setting flexible rates. This study introduces a 
Model Predictive Control (MPC) framework that helps you locate the 
best time slots for charging and discharging your EV using V2G 
technology. To optimize energy flow, the controller looks ahead to 
forecast the grid’s load and predicts electricity prices and then adjusts 
charging and discharging times based on user requirements and the 
state of the battery. 
Computer simulations done with MATLAB/Simulink on a fleet of 20 EVs 
under Time-of-Use pricing conclude that the strategy reduces the peak 
demand on the grid by 28% and total energy costs by 27.4%, with no 
EVs falling below a 100% charge level. How stable the grid was 
improved significantly. This suggests that MPC can ensure EVs are 
plugged in intelligently, lead to savings and keep the grid stableso MPC 
is appropriate for use in highly electric vehicle-oriented grids. 
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1.INTRODUCTION 
Thanks to the adoption of electric vehicles (EVs), 
power systems become more flexible, but this also 
creates concerns about load imbalance, fluctuating 
tensions and grid weakening. Through 
bidirectional charging or Vehicle-to-Grid (V2G), 
EVs are able to use electricity and send extra 
power to the grid too, helping in demand response, 
integrating renewable energy and making the 
electricity grid more reliable. 
In 2023, the U.S. BTF underscored V2G as a vital 
part of smart grid development and FAME-II in 
India (2024) pointed out the same. Technical 
feasibility experiments by CAISO, UK Power 
Networks and TEPCO have already been 
implemented. On the other hand, bringing 
widespread adoption largely depends on user-
friendly ways to coordinate, rapid battery loss 
problems, not enough financial reasons and high 
cost of data transmissions in systems that depend 
only on a central control unit. 
 
 
 
 

Statically scheduled plans or adaptive AI take care  
of some parts of the job, but not all. Rule-based 
systems are not very flexible and reinforcement 
learning methods pit poor understanding of how 
actions affect rewards against limited runtime. 
Besides, little research considers how to use 
batteries according to their life cycle or how to 
coordinate EV fleets in different ways under 
different constraints. 
This approach suggests a Model Predictive Control 
(MPC) framework for bi-directional EV charging 
that coordinates the vehicle with different factors 
such as power grid status, electricity tariffs and 
battery charging. A simulation on a large fleet scale 
under ToU pricing confirms that the framework 
makes a big difference in reducing peak load, saves 
money and ensures charging to the optimal level. It 
overcomes main deployment difficulties through 
understandable actions, the ability to use green 
energy and being able to control things from edge 
or fog systems. 
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Figure 1. MPC-Based Architecture for Intelligent 

Bidirectional EV Charging in Smart Grids 
 
2. LITERATURE REVIEW 
Because more electric vehicles (EVs) are joining 
power grids, there is a need for advanced systems 
to manage energy sharing between the grid and 
EVs while maintaining a stable network. Normal 
approaches to rules and artificial intelligence are 
not enough in flexible markets, including times 
with changing demands, prices and user numbers. 
Pointing out its foreseeing nature and the ability to 
ensure limits are obeyed together over time,  

researchers have begun using Model Predictive 
Control (MPC) as an alternative. An adaptive 
framework for Vehicle-to-Grid (V2G) scheduling 
faced with uncertain user actions was proposed by 
Li et al. in 2023 and the new approach helped 
much and made urban microgrids both more 
efficient and more stable when it comes to costs 
and grid operation [Applied Energy, 336, 120830]. 
Nearly concurrently, research has shown that 
managing power from many EVs requires 
teamwork and harmony. In their study, Wang et al. 
(2022) chose a hierarchical MPC structure to 
handle multiple decentralized charging stations 
and succeeded in handling both local and global 
demands for power [IEEE Transactions on Smart 
Grid, 13(1), 188–199]. Besides, smart charging is 
now exploring Vehicle-to-Vehicle (V2V) energy 
sharing. Zhao et al. (2024) designed a 
reinforcement learning system with agents to 
support energy sharing among electric vehicles, 
making sure that power distribution nodes aren’t 
overloaded [Energy Reports, 10, 1245–1259]. 
Even with all these developments, a lot of popular 
approaches do not integrate degradation-aware 
cost modeling, time-of-use pricing and coordinated 
scheduling for both V2G and V2V transactions. 
Seeing these issues, the research gap revealed 
means this study creates a holistic MPC-based 
charging system that helps the grid, meets user-
defined requirements and coordinates the fleet 
under real smart grid conditions. 

 
Table 1. Comparative Analysis of Rule-Based, AI-Based, and Proposed MPC Frameworks 

Criteria 
Rule-Based 
Methods 

Heuristic / AI-Based 
Methods 

Proposed MPC-Based 
Bidirectional Charging 
Framework 

Adaptability to 
Grid Conditions 

Low – Fixed 
schedules (e.g., 
ToU) 

Medium – Pattern-based 
adaptation 

High – Predictive adjustment 
based on real-time grid/load 
forecasts 

Support for 
Bidirectional 
V2G 

No 
Partial – Often 
unidirectional or not 
grid-synchronized 

Yes – Explicitly supports 
coordinated 
charging/discharging 

User 
Preference 
Integration 

Limited (pre-set 
times) 

Medium – Learned 
behavior (e.g., via 
reinforcement learning) 

High – Directly models SoC 
limits, availability, and battery 
degradation 

Electricity 
Price 
Awareness 

Static ToU rates 
Partial – Reactive to 
pricing patterns 

Full – Optimizes charging using 
time-varying dynamic pricing 

Constraint 
Handling 

Weak – Few or 
no physical 
constraints 

Weak to Moderate – 
Implicit in AI models 

Strong – Explicitly handles SoC, 
charger limits, grid capacity, 
degradation 

Real-Time 
Optimization 

None 
Limited – High 
computational 
complexity in real-time 

Yes – Solves constrained 
optimization over a rolling 
horizon 

Scalability for 
Fleet Control 

Poor – Not suited 
for multiple EVs 

Moderate – Some 
methods scale but 
inefficiently 

High – Designed for multiple EVs 
with centralized or distributed 
control 

Transparency High – Easy to Low – Often black-box High – Mathematically 
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& 
Interpretability 

understand rules models formulated, explainable control 
outputs 

Computational 
Complexity 

Very Low 
High – Especially for large 
search spaces 

Moderate – Efficient solvers 
enable practical deployment 

Deployment 
Readiness 

Already deployed 
in simple settings 

Experimental in most 
V2G systems 

Ready for real-world smart grid 
integration with coordination 
logic 

 
3. SYSTEM MODEL AND ASSUMPTIONS 
A simulation model is designed for the proposed 
bidirectional EV charging system to see how it 
works in realistic upcoming operational 
environments. The model is built from two main 
elements: (i) the EV battery and (ii) the smart grid 
system, with its MPC controller and the ways it 
works with dynamic pricing and load forecasting. 
 
3.1 EV and Battery Model 
Each EV is modeled with a lithium-ion battery of 
rated capacity 𝐸𝑚𝑎𝑥 = 60𝑘𝑊ℎ and bidirectional 
charging/discharging power limits𝑃𝑖

𝑚𝑖𝑛 =
 −7𝑘𝑊, 𝑃𝑖

𝑚𝑎𝑥 = 7𝑘𝑊. To preserve battery life, the 
operational State of Charge (SoC) is constrained 
within 20% to 90%. The model incorporates 
battery efficiency η=0.92to reflect 
charging/discharging losses. Battery degradation 
cost is integrated into the MPC objective function 
to penalize excessive cycling, promoting 
sustainable V2G participation. 
 
3.2 Grid Environment and Pricing Scheme 
Simulation for the grid-side model runs for a 24-
hour period with updates every 15 minutes 
(Δt=0.25 h). Under the time-of-use (ToU) system, 
three charges are used: low (Ρ3/kWh), medium 
(Ρ6/kWh) and high (Ρ10/kWh), based on the 
period of the day which are off-peak, mid-load and 
peak hours. There are typical morning and evening 
rises and drops in the load profile. 
 
3.3 Communication and Control Framework 
The MPC controller operates centrally, receiving: 

 Predicted grid load and electricity prices 
 EV availability and SoC feedback 
 Infrastructure constraints (e.g., station 

capacity) 
modeling a one-minute delay mirrors how real-
time control needs the system to update. Since 
there are clear chances of latency, it is suggested 
that future use of fog/edge networks should 
examine this challenge in depth. 
 
 

 
Figure 2.  Simulation Model Architecture for the 

MPC-Based Bidirectional EV Charging Framework 
 
4. Model Predictive Control (MPC) Formulation 
We develop an optimization problem using MPC to 
manage energy transfer between both electric 
vehicles (EVs) and the grid, considering a forecast 
horizon of NNN. The goal is to decrease a cost 
function that includes several goals within the 
limits of the grid, users and batteries. 
 

 
Figure 3. Optimization Workflow in Model 

Predictive Control Framework 
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4.1 Objective Function 
The cost function balances electricity cost and load 
smoothing over the horizon: 

𝑚𝑖𝑛

𝑃
  𝐶 𝑡  . 𝑃𝑖 𝑡 

𝑇

𝑡=1

+ 𝛼  𝐿𝑔𝑟𝑖𝑑  𝑡 +  𝑃𝑖 𝑡 

𝑀

𝐼=1

− 𝐿𝑟𝑒𝑓 (𝑡) 2 − − − (1) 

 
4.2 State of Charge (SoC) Dynamics 
Battery energy dynamics are modeled as: 

𝑆𝑜𝐶𝑖 𝑡 + 1 = 𝑆𝑜𝐶𝑖 𝑡 +  
𝜂 . 𝑃𝑖  .  ∆𝑡

𝐸𝑚𝑎𝑥

− − − − − −

− − − − − (2) 
4.3 Constraints 
The optimization is subject to the following 
constraints for each EV iii and time step ttt: 

Power limits𝑃𝑖
𝑚𝑖𝑛 ≤ 𝑃𝑖 𝑡  ≤  𝑃𝑖

𝑚𝑎𝑥 − − − − −
− − − − −(3) 
 
State of charge limits:𝑆𝑜𝐶𝑖

𝑚𝑖𝑛 ≤ 𝑆𝑜𝐶𝑖 𝑡 ≤
 𝑆𝑜𝐶𝑖

𝑚𝑎𝑥 − − − − − − − −(4) 
 
Station capacity constraint: 𝑃𝑖(𝑡)𝑀

𝑖=1  ≤
 𝑃𝑠𝑡𝑎𝑡𝑖𝑜𝑛

𝑚𝑎𝑥 − − − − − − − − − −(5) 
These constraints ensure physical feasibility, 
protect battery health, and avoid infrastructure 
overloading during real-time operation. 
 
5. Simulation and Results 
For testing whether the proposed system is 
effective, simulation experiments were carried out 
in MATLAB/Simulink. The objective was to test if 
the system can help cut peak grid use, save money 
by lowering operations and balance battery SoC 
under diverse grid and price situations. Charging 
performance was compared to the result of using a 
typical rule-based approach. 
 
5.1 Simulation Setup 
A charging system with a total capacity of 100 kW 
was selected to serve a fleet of 20 EVs, each with a 
60 kWh battery kept between 20% battery level 
and maximum level (90%). Values were monitored 
every 15 minutes for a total time of 24 hours. Tesla 
offers a pricing plan with rates of ₹3/kWh (off-
peak), ₹6/kWh (mid-range) during normal hours 
and ₹10/kWh for the highest demand times. 
To look at renewable integration, a solar PV 
generation model was created from 08:00 to 16:00, 
allowing it to contribute up to 30% of the total 
system load. Also, the system was tested to see 
how it would handle a rise in EVs from 20 to 100. 

 

 
Figure 4. Grid Load Profile Before and After MPC 

Implementation 
 
5.2 Key Results and Comparative Analysis 
Using the MPC controller, peak demand dropped by 
28% which helped smooth the demand curve and 
ease the pressure on the grid (as seen in Figure 4). 
Prices were 27.4% lower than before which 
indicates the framework can handle changes in 
electricity costs. All the EVs stayed within the safe 
SoC range during the test which supports the 
health of their batteries (Figure 5). 
 

Table 2. Comparative Performance Metrics of 
Rule-Based and MPC-Based Control Systems 

Metric Rule-Based MPC-Based 
Peak Load (kW) 134 96 
Average Cost (₹) 310 225 
Grid Stability Index Moderate High 

 

 
Figure 5. EV SoC Trajectories Over 24 Hours 

 
5.3 PV and Scalability Performance 
Green and affordable PV energy allowed the 
charging stations to be powered during the day 
which benefited both the economy and the 
environment. Scheduled charging changed 
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according to the availability of solar energy from 
the panels. 
As shown in the analysis (Figure 6), system 
performance did not change much when the fleet 
number increased from 20 to 100 EVs. As the 
framework succeeded in keeping both SoC and 
power constraints, along with being efficient, it 
became clear that it can work on large-scale smart 
grid systems. 

 

 
Figure 6. Performance Metrics vs EV Fleet Size 

6. DISCUSSION 
It is shown through the simulation that the 
proposed Model Predictive Control (MPC)-based 
bidirectional EV charging framework helps the 
smart grid run more efficiently and smoothly. The 
controller looked ahead and scheduled EV charging 
for times when electricity was cheap and off-peak. 
After load reshaping, peak demand decreased by 
28%, lowering grid stress and cutting down on the 
requirement for new power system infrastructure. 
In addition, the framework succeeded in reducing 
average energy cost by 27.4% which made Time-
of-Use (ToU) pricing more profitable for everyone 
involved. 
EVs were retained within their safe charging range 
(20%–90%) by the algorithm which contributed to 
user satisfaction and kept batteries safe. Because it 
produced no SoC violations, the performance 
allowed for real-world adoption of V2G technology. 
The system made the grid more stable, with the 
stability index going from ‘Moderate’ to ‘High’, 
showing it can be used with solar and wind energy. 

 
Table 3. Comparative Performance Summary 

Method Peak Load Reduction SoC Violation Avg. Cost (₹) 
Rule-Based Low Medium ₹310 
MPC (Proposed) High None ₹225 

 
MPC-based control is more adaptable, responsive 
and suited for handling multiple objectives when 
assessed next to traditional rules and heuristics 
[Shao et al., 2011; He et al., 2012]. Though deep 
reinforcement learning models (Zhang et al., 2021) 
are flexible, they commonly give no insight into 
their decisions, have limited applicability in real 
time and are not always effective with constraints 
mentioned explicitly. In comparison, MPC provides 
clear explanations, real-time changes in operation 
and the ability to manage grid functions, customer 
comfort and cost. 
 
6.1. Battery Degradation Considerations 
For machines to work long-term, adaptive control 
to gradual wear is necessary. Even though this 
study depended on no-charge terms and SoC 
changes to manage battery lifetime, further studies 
should use real-life battery degradation modeling. 
One method, the Rainflow Counting Algorithm, 
estimates the damage caused by the number of 
cycles and another, the Ah-throughput model, 
looks at the total energy that is input or output, 
both important for battery lifespan modeling. You 
can use these features in the MPC objective 
function which helps V2G participation continue 
over a long time. 
 
 
 

7. CONCLUSION AND FUTURE WORK 
This research proves that Model Predictive Control 
(MPC) provides an efficient and flexible way to 
optimize charging in both directions when used 
with smart grids. Using forecasts, real-time pricing 
and users’ limits, the presented system manages to 
reduce peak usage, make energy costs lower and 
keep the grid stable. The controller also controls 
the battery’s level and allows EVs to be powered by 
intermittent renewable energy which increases 
their value outside the field of transportation. 
Results from the simulation demonstrated that the 
approach is doable in actual operating situations, 
leading to 28% peak load reduction, 27.4% fewer 
expenses and no breaches of the full charge limit. 
They indicate that MPC can be implemented 
quickly for Vehicle-to-Grid (V2G) services both 
inside cities and in nearby areas. 
 
7.1 Deployment Considerations 
Despite its technical strengths, real-world 
implementation presents several challenges that 
must be addressed: 
 Communication latency: Real-time 

coordination of distributed EV fleets requires 
the adoption of edge or fog computing 
architectures to minimize delays and improve 
system responsiveness. 

 Cybersecurity and data privacy: As V2G 
systems become more interconnected, 
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ensuring secure data exchange and 
preventing cyber threats becomes critical. 
Future work should explore privacy-
preserving control architectures. 

 User engagement: Sustained user 
participation hinges on dynamic pricing 
incentives, battery wear compensation 
mechanisms, and transparent control logic 
that ensures trust in the system. 

 
7.2. Future Work 
Building on the current framework, future 
extensions will include: 
 Integration of renewable energy forecasting 

to enhance real-time energy balancing. 
 Deployment of MPC on edge/fog-based 

controllers to enable field-level execution and 
reduce control loop delays. 

 Exploration of decentralized or federated MPC 
architectures to manage large-scale EV fleets 
while preserving user privacy and minimizing 
centralized communication overhead. 

Such advancements will enable the proposed 
system to scale effectively in emerging smart grid 
ecosystems, making it suitable for both residential 
aggregators and urban microgrid operators aiming 
to harness the full potential of EVs in distributed 
energy management. 
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