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Adding electric vehicles (EVs) to smart grids brings issues with handling
peak energy demand and setting flexible rates. This study introduces a
Model Predictive Control (MPC) framework that helps you locate the
best time slots for charging and discharging your EV using V2G
technology. To optimize energy flow, the controller looks ahead to
forecast the grid’s load and predicts electricity prices and then adjusts
charging and discharging times based on user requirements and the
state of the battery.

Computer simulations done with MATLAB/Simulink on a fleet of 20 EVs
under Time-of-Use pricing conclude that the strategy reduces the peak
demand on the grid by 28% and total energy costs by 27.4%, with no
EVs falling below a 100% charge level. How stable the grid was
improved significantly. This suggests that MPC can ensure EVs are
plugged in intelligently, lead to savings and keep the grid stableso MPC

Model Predictive Control (MPC),
Smart Grids,

Peak Load Reduction,

Battery Degradation,

Charging Optimization

is appropriate for use in highly electric vehicle-oriented grids.

1.INTRODUCTION

Thanks to the adoption of electric vehicles (EVs),
power systems become more flexible, but this also
creates concerns about load imbalance, fluctuating
tensions and grid weakening.  Through
bidirectional charging or Vehicle-to-Grid (V2G),
EVs are able to use electricity and send extra
power to the grid too, helping in demand response,
integrating renewable energy and making the
electricity grid more reliable.

In 2023, the U.S. BTF underscored V2G as a vital
part of smart grid development and FAME-II in
India (2024) pointed out the same. Technical
feasibility experiments by CAISO, UK Power
Networks and TEPCO have already been
implemented. On the other hand, bringing
widespread adoption largely depends on user-
friendly ways to coordinate, rapid battery loss
problems, not enough financial reasons and high
cost of data transmissions in systems that depend
only on a central control unit.

Statically scheduled plans or adaptive Al take care
of some parts of the job, but not all. Rule-based
systems are not very flexible and reinforcement
learning methods pit poor understanding of how
actions affect rewards against limited runtime.
Besides, little research considers how to use
batteries according to their life cycle or how to
coordinate EV fleets in different ways under
different constraints.

This approach suggests a Model Predictive Control
(MPC) framework for bi-directional EV charging
that coordinates the vehicle with different factors
such as power grid status, electricity tariffs and
battery charging. A simulation on a large fleet scale
under ToU pricing confirms that the framework
makes a big difference in reducing peak load, saves
money and ensures charging to the optimal level. It
overcomes main deployment difficulties through
understandable actions, the ability to use green
energy and being able to control things from edge
or fog systems.
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Figure 1. MPC-Based Architecture for Intelligent
Bidirectional EV Charging in Smart Grids

2. LITERATURE REVIEW

Because more electric vehicles (EVs) are joining
power grids, there is a need for advanced systems
to manage energy sharing between the grid and
EVs while maintaining a stable network. Normal
approaches to rules and artificial intelligence are
not enough in flexible markets, including times
with changing demands, prices and user numbers.
Pointing out its foreseeing nature and the ability to
ensure limits are obeyed together over time,

researchers have begun using Model Predictive
Control (MPC) as an alternative. An adaptive
framework for Vehicle-to-Grid (V2G) scheduling
faced with uncertain user actions was proposed by
Li et al. in 2023 and the new approach helped
much and made urban microgrids both more
efficient and more stable when it comes to costs
and grid operation [Applied Energy, 336, 120830].
Nearly concurrently, research has shown that
managing power from many EVs requires
teamwork and harmony. In their study, Wang et al.
(2022) chose a hierarchical MPC structure to
handle multiple decentralized charging stations
and succeeded in handling both local and global
demands for power [IEEE Transactions on Smart
Grid, 13(1), 188-199]. Besides, smart charging is
now exploring Vehicle-to-Vehicle (V2V) energy
sharing. Zhao et al. (2024) designed a
reinforcement learning system with agents to
support energy sharing among electric vehicles,
making sure that power distribution nodes aren’t
overloaded [Energy Reports, 10, 1245-1259].

Even with all these developments, a lot of popular
approaches do not integrate degradation-aware
cost modeling, time-of-use pricing and coordinated
scheduling for both V2G and V2V transactions.
Seeing these issues, the research gap revealed
means this study creates a holistic MPC-based
charging system that helps the grid, meets user-
defined requirements and coordinates the fleet
under real smart grid conditions.

Table 1. Comparative Analysis of Rule-Based, Al-Based, and Proposed MPC Frameworks

Criteria Rule-Based Heuristic / Al-Based g?:l)il:‘(;?tei(:)nal Mf(’:i:iasiﬁd
Methods Methods sing
Framework
Adaptability to Low - Fixed Medium - Pattern-based High - Predlctl\-/e ad]u-stment
. o schedules (e.g, . based on real-time grid/load
Grid Conditions adaptation
ToU) forecasts
Support for Partial - Often | Yes -  Explicitly supports
Bidirectional No unidirectional or not | coordinated
V2G grid-synchronized charging/discharging
User . Medium - Learned | High - Directly models SoC
Limited (pre-set . . 2 s
Preference . behavior (e.g., via | limits, availability, and battery
. times) . . .
Integration reinforcement learning) degradation
Electricity . . . . .
Awareness P §P yms &y P &
Constraint Weak - Few. O | Weak to Moderate - Strong - E.Xp.11c1tly handles S.OC’
. no physical L charger limits, grid capacity,
Handling . Implicit in Al models .
constraints degradation
. Limited - High | Yes - Solves constrained
Real-Time . N .
I None computational optimization over a rolling
Optimization o . )
complexity in real-time horizon
Scalability for | Poor - Not suited Moderate - Some Hl.gh - DeSIgrlled for mulltlp.le EVs
) methods scale but | with centralized or distributed
Fleet Control for multiple EVs e
inefficiently control
Transparency High - Easy to | Low - Often black-box | High - Mathematically
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& understand rules | models formulated, explainable control

Interpretability outputs

Computational High - Especially for large | Moderate - Efficient solvers

. Very Low .

Complexity search spaces enable practical deployment

Deployment Already deployed | Experimental in most Ready fgr real-.world sma.rt g.rld
. .. . integration with coordination

Readiness in simple settings | V2G systems logic

3.SYSTEM MODEL AND ASSUMPTIONS

A simulation model is designed for the proposed
bidirectional EV charging system to see how it
works in realistic upcoming operational
environments. The model is built from two main
elements: (i) the EV battery and (ii) the smart grid
system, with its MPC controller and the ways it
works with dynamic pricing and load forecasting.

3.1 EV and Battery Model

Each EV is modeled with a lithium-ion battery of
rated capacity E,,, = 60kWE and bidirectional
charging/discharging power limitsP/"" =
—7kW,P"** = 7kW. To preserve battery life, the
operational State of Charge (SoC) is constrained
within 20% to 90%. The model incorporates
battery efficiency n=0.92to reflect
charging/discharging losses. Battery degradation
cost is integrated into the MPC objective function
to penalize excessive cycling, promoting
sustainable V2G participation.

3.2 Grid Environment and Pricing Scheme
Simulation for the grid-side model runs for a 24-
hour period with updates every 15 minutes
(At=0.25h). Under the time-of-use (ToU) system,
three charges are used: low (P3/kWh), medium
(P6/kWh) and high (P10/kWh), based on the
period of the day which are off-peak, mid-load and
peak hours. There are typical morning and evening
rises and drops in the load profile.

3.3 Communication and Control Framework
The MPC controller operates centrally, receiving:

e Predicted grid load and electricity prices

e EV availability and SoC feedback

e Infrastructure constraints (e.g, station

capacity)

modeling a one-minute delay mirrors how real-
time control needs the system to update. Since
there are clear chances of latency, it is suggested
that future use of fog/edge networks should
examine this challenge in depth.

EV and Battery Grid Parameters

Model * Time horizon: 24 hr
* Battery capacity: e Load file:
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Figure 2. Simulation Model Architecture for the
MPC-Based Bidirectional EV Charging Framework

4. Model Predictive Control (MPC) Formulation

We develop an optimization problem using MPC to
manage energy transfer between both electric
vehicles (EVs) and the grid, considering a forecast
horizon of NNN. The goal is to decrease a cost
function that includes several goals within the
limits of the grid, users and batteries.

Control Framework

.
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‘\ Model Predictive J

Minimize
Composite
Cost

Constraints

Figure 3. Optimization Workflow in Model
Predictive Control Framework
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4.1 Objective Function
The cost function balances electricity cost and load
smoothing over the horizon:

T
= [C(t) 910
t=1 M
ta Lri (t)+ Pi(t)
[0+

- Lref (t)> 2l=—- (1)

4.2 State of Charge (SoC) Dynamics

Battery energy dynamics are modeled as:
n.p. At

Emax

4.3 Constraints
The optimization is subject to the following
constraints for each EV iii and time step ttt:

Power limitsP"" < P,(t) < P — — — — —

————— ©

State of charge limits:SoC™" < SoC;(t) <
SoCM™* — — — — — — — — (4)

Station capacity constraint:3" P;(t) <

P;?gt);on __________ (5)
These constraints ensure physical feasibility,
protect battery health, and avoid infrastructure
overloading during real-time operation.

5. Simulation and Results

For testing whether the proposed system is
effective, simulation experiments were carried out
in MATLAB/Simulink. The objective was to test if
the system can help cut peak grid use, save money
by lowering operations and balance battery SoC
under diverse grid and price situations. Charging
performance was compared to the result of using a
typical rule-based approach.

5.1 Simulation Setup

A charging system with a total capacity of 100 kW
was selected to serve a fleet of 20 EVs, each with a
60 kWh battery kept between 20% battery level
and maximum level (90%). Values were monitored
every 15 minutes for a total time of 24 hours. Tesla
offers a pricing plan with rates of I3/kWh (off-
peak), X6/kWh (mid-range) during normal hours
and X10/kWh for the highest demand times.

To look at renewable integration, a solar PV
generation model was created from 08:00 to 16:00,
allowing it to contribute up to 30% of the total
system load. Also, the system was tested to see
how it would handle a rise in EVs from 20 to 100.

g Rule-Based
MPC-Based
60
z
Z50
E
<]
40
30
0 5 10 15 2
Time (Hours)
Figure 4. Grid Load Profile Before and After MPC
Implementation

5.2 Key Results and Comparative Analysis

Using the MPC controller, peak demand dropped by
28% which helped smooth the demand curve and
ease the pressure on the grid (as seen in Figure 4).
Prices were 27.4% lower than before which
indicates the framework can handle changes in
electricity costs. All the EVs stayed within the safe
SoC range during the test which supports the
health of their batteries (Figure 5).

Table 2. Comparative Performance Metrics of
Rule-Based and MPC-Based Control Systems

Metric Rule-Based | MPC-Based
Peak Load (kW) 134 96
Average Cost () 310 225
Grid Stability Index | Moderate High
100+ g g
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Figure 5. EV SoC Trajectories Over 24 Hours

5.3 PV and Scalability Performance

Green and affordable PV energy allowed the
charging stations to be powered during the day
which benefited both the economy and the
environment.  Scheduled charging changed
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according to the availability of solar energy from
the panels.

As shown in the analysis (Figure 6), system
performance did not change much when the fleet
number increased from 20 to 100 EVs. As the
framework succeeded in keeping both SoC and
power constraints, along with being efficient, it
became clear that it can work on large-scale smart
grid systems.
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Figure 6. Performance Metrics vs EV Fleet Size

6. DISCUSSION

It is shown through the simulation that the
proposed Model Predictive Control (MPC)-based
bidirectional EV charging framework helps the
smart grid run more efficiently and smoothly. The
controller looked ahead and scheduled EV charging
for times when electricity was cheap and off-peak.
After load reshaping, peak demand decreased by
28%, lowering grid stress and cutting down on the
requirement for new power system infrastructure.
In addition, the framework succeeded in reducing
average energy cost by 27.4% which made Time-
of-Use (ToU) pricing more profitable for everyone
involved.

EVs were retained within their safe charging range
(20%-90%) by the algorithm which contributed to
user satisfaction and kept batteries safe. Because it
produced no SoC violations, the performance
allowed for real-world adoption of V2G technology.
The system made the grid more stable, with the
stability index going from ‘Moderate’ to ‘High’,
showing it can be used with solar and wind energy.

Table 3. Comparative Performance Summary

Method Peak Load Reduction SoC Violation Avg. Cost (X)
Rule-Based Low Medium %310
MPC (Proposed) High None 3225

MPC-based control is more adaptable, responsive
and suited for handling multiple objectives when
assessed next to traditional rules and heuristics
[Shao et al, 2011; He et al, 2012]. Though deep
reinforcement learning models (Zhang et al., 2021)
are flexible, they commonly give no insight into
their decisions, have limited applicability in real
time and are not always effective with constraints
mentioned explicitly. In comparison, MPC provides
clear explanations, real-time changes in operation
and the ability to manage grid functions, customer
comfort and cost.

6.1. Battery Degradation Considerations

For machines to work long-term, adaptive control
to gradual wear is necessary. Even though this
study depended on no-charge terms and SoC
changes to manage battery lifetime, further studies
should use real-life battery degradation modeling.
One method, the Rainflow Counting Algorithm,
estimates the damage caused by the number of
cycles and another, the Ah-throughput model,
looks at the total energy that is input or output,
both important for battery lifespan modeling. You
can use these features in the MPC objective
function which helps V2G participation continue
over a long time.

7. CONCLUSION AND FUTURE WORK

This research proves that Model Predictive Control
(MPC) provides an efficient and flexible way to
optimize charging in both directions when used
with smart grids. Using forecasts, real-time pricing
and users’ limits, the presented system manages to
reduce peak usage, make energy costs lower and
keep the grid stable. The controller also controls
the battery’s level and allows EVs to be powered by
intermittent renewable energy which increases
their value outside the field of transportation.
Results from the simulation demonstrated that the
approach is doable in actual operating situations,
leading to 28% peak load reduction, 27.4% fewer
expenses and no breaches of the full charge limit.
They indicate that MPC can be implemented
quickly for Vehicle-to-Grid (V2G) services both
inside cities and in nearby areas.

7.1 Deployment Considerations

Despite its technical strengths, real-world

implementation presents several challenges that

must be addressed:

e Communication latency: Real-time
coordination of distributed EV fleets requires
the adoption of edge or fog computing
architectures to minimize delays and improve
system responsiveness.

e  Cybersecurity and data privacy: As V2G
systems become more interconnected,
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ensuring secure data exchange and
preventing cyber threats becomes critical.
Future work should explore privacy-
preserving control architectures.

User engagement: Sustained user
participation hinges on dynamic pricing
incentives, battery wear compensation
mechanisms, and transparent control logic
that ensures trust in the system.

7.2. Future Work

Building on the

current framework, future

extensions will include:

Integration of renewable energy forecasting
to enhance real-time energy balancing.
Deployment of MPC on edge/fog-based
controllers to enable field-level execution and
reduce control loop delays.

Exploration of decentralized or federated MPC
architectures to manage large-scale EV fleets
while preserving user privacy and minimizing
centralized communication overhead.

Such advancements will enable the proposed
system to scale effectively in emerging smart grid
ecosystems, making it suitable for both residential
aggregators and urban microgrid operators aiming
to harness the full potential of EVs in distributed
energy management.
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