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The expanding pressure of urban activility and congestion has led to the
evolution of intelligent transportation systems (ITS) that are taking
recourse to real time video ways to either be more efficient in their
operations and maintain public safety. In this research, a scalable edge-
based design that could facilitate distributed and low latency video
processing is presented to power smart transport networks. The new
system will implement the containerized modules of analytics which
will be deployed on edge nodes placed at any intersection points or
roadside units to provide on-site detection of objects, and mult-object
tracking. The hybrid video processing pipeline is used such that it
incorporates convolutional neural networks (CNNs) and lightweight
tracking algorithms (e.g, DeepSORT) in order to provide high
performance but be efficiently computable on resources-limited devices.
In order to assess the performance of the system, the task of testing
latency, throughput, and scalability was realized using real-world traffic
video sets. As experimental results demonstrate, there is a 45 percent
end-to-end latency reduction with a 60 percent reduction in a
bandwidth used in the cloud as opposed to centralized cloud processing
models. The architecture was also proved to be invariant to object
detection and frame processing rate when faced with greater camera
loads. The study validates the possibility of implementing edge-oriented
intelligence in intelligent transportation systems to allow incidents to be
detected and identified quicker, rely less on cloud systems and scale
better. The suggested framework has given the future edge-to-cloud
integrated ITS deployment an initial framework, which requires real-
time response and resource optimization efficiency.

1. INTRODUCTION

The congestion of the urban traffic, poor and

population safety. Furthermore, the centralized
solutions are not scalable when they are

inefficient management of the signs, and the threat
of the road safety are the issues that have been
constantly present in the contemporary urban
setting. The need of the intelligent transportation
systems (ITS) that can have the real-time
situational awareness and decision-making has
increased with rapid growth in vehicle density and
population. To that end, video-based analytics has
become a potential solution to ITS, with some of its
structural features being capability to optimize the
traffic flow, detect incidents, as well as adaptive
signal management. Nevertheless, video analytics
architecture that is currently popular is based on
the cloud, where the problem is quite significant
high communication latency, high bandwidth
consumption, and the need to address the issues
related to data privacy and reliability. Such
constraints are of crucial importance in latency-
insective transportation applications in which
immediate reaction times are crucial to ensure

implemented in large scale with respect to a high-
resolution video stream at urban intersections. The
most recent experiments have investigated edge
computing and its ability to perform video
analytics nearer the source of information thereby
enhancing responsiveness and lessens reliance on
the cloud [1]. However, most of such solutions do
not have scalable architecture and effective
distributed edge node coordination mechanisms.
There is also an untapped trade-off between real-
time optimality and computational capabilities of
the edge devices.

In this paper, the edge and scalable architecture
based on real-time video analytics of smart
transportation systems are proposed. The system
makes use of the low-weight containerized
analytics modules hosted in edge nodes, and it is
capable of distributed coordination and horizontal
scalability across various points of traffic
monitoring.
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2. RELATED WORK

The current state of edge computing has allowed
the implementation of an on-site processing
capability of sensor and video input in urban
public transport. Edge-assisted video analytics
solutions have been suggested to support real-time
object detection [2], traffic flow estimation [3], and
anomaly detection [4] and state the use of deep
neural networks to process visual streams locally
or locally next to the data source. Such strategies
facilitate a significant decrease of latency and
improve network congestion as opposed to cloud-
only architectures. Most of the available systems
are characterized by some fundamental limitations
irrespective of their contributions. Firstly, most of
them are based on fixed-function hardware or fixed
analytic pipelines that lack scaling to different
traffic densities or several intersections. Second,
horizontal scalability and synchronization between
distributed edge nodes is seldom concerned, so the
system expansion is inefficient in large-scale
deployments. Third, optimisation in terms of
computational cost and detection accuracy is also
most frequently ignored in the face of varying
camera loads, where limited edge resources may

Traffic Cameras

Edge Node

Video Ingestion

result in variable performance or processing
latency.

Such gaps reflect the importance of a dynamic,
scalable, modular edge-based architecture that can
both expand to meet varying workloads and
ensure real-time analytics, as well as enable
processing  multi-node systems that are
geographically distant. These issues are resolved in
this paper which proposes a scalable edge video
analytics system that is lightweight and can meet
the requirements of smart transportation
infrastructures.

3. System Architecture

This part describes the main elements of the
introduced scalable edge-based solution of the
real-time video analysis in smart transport
systems. The system is focused on modularity, low
latency, and horizontal scaling in order to advert to
high-throughput analytics to numerous
intersections in an urban setting. Figure 1: Scalable
Edge-Based Video Analytics Architecture for Smart
Transportation shows the general structure of the
working system.
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Figure 1. Scalable Edge-Based Video Analytics Architecture for Smart Transportation

Architectural diagram showing the implementation
of edge nodes to do real-time traffic video
analytics. Traffic cameras are connected to specific
edge nodes with GPU acceleration on which the
video ingestion, preprocessing, object detection
and object tracking are done. Metadata is
processed and reported to a cloud dashboard
and/or a regional coordinator using MQTT or
RESTful APIs and used in an aggregated monitor
and control application.

3.1 Edge Node Design

Each edge node is constructed on a GPU-enabled
microserver platform like the NVIDIA Jetson TX2
that can run its many deep learning tasks in real
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time. The node executes containerized services
implemented through the Docker to guarantee
modularity and simplicity of sharing. The analytics
pipeline consists of a number of essential modules:
(i) the video ingestion module that processes
streams in real-time coming either directly from
traffic cameras or after the preprocessing; (ii) the
preprocessing module that scales frames and
removes irrelevant objects; (iii) the object
detection module that detects vehicles and people
using a light model of YOLOvV5 as object detectors;
and (iv) the multi-object tracking module that
outputs or updates identity consistent across the
frames. The stack is a low latency modularised
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software designed to be executed using low
computational resources at the edge.

3.2 Communication Model

The system embraces a mixed communication
paradigm that incorporates the MQTT, a
lightweight message queuing strategy, and the
RESTful APIs, a structured data exchange scheme.
This allows real time co-ordination among edge
nodes, regional controllers and management
dashboards running in the cloud. The inter-node
communication allows transferring incidence (e.g.
congestion, accident) and also joint decision
making including adaptive signal control or
rerouting recommendations. The communication
model also enables edge-cloud data gathering so
that offline analytics and long-term storage can be
done offline without bringing the performance to
the knees.

3.3 Scalability Mechanism

The architecture has a horizontal scaling
mechanism, which allows facilitating the
implementation within large transport

infrastructures. The dynamic classification of new
edge nodes can be expanded by using geography
(e.g. intersections and corridors) or system load
(e.g. increased rates of video feeds). With a
distributed task scheduler, the intelligently
dynamically balancing loads and migration of tasks

between nodes is possible not only because of
resource availability and quality of streams. This
design has the benefit of being sustaining with a
constant throughput and fault tolerance, with
variable workloads and hardware constraints.

4. METHODOLOGY

The section describes the experimental procedure
that was used to test the proposed edge-based
video analytics system to apply it in smart
transportation systems. This methodology will
include the process of choosing data sets, setting
up the model, implementing the system, and
assessment measures.

4.1 Video Dataset

As an example of the out-of-the-box application of
the discussed system, it was tested on real-time
traffic video footage of the Al City Challenge
Dataset (Track 1) in order to replicate the real-life
urban traffic conditions. This data source offers
high-definition video feeds recorded in various
intersections, with a variety of traffic scenarios
such as different levels of vehicles, people, and
lightings. The realistic temporal evolution and high
annotations nature of the dataset render it suitable
in benchmarking the level of object detection and
tracking in smart cities. The schematic description
of the organization and main peculiarities of the
dataset can be viewed at Figure 2.
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Figure 2. Schematic Overview of Al City Challenge Dataset (Track 1) Utilization

The diagram represents the structure and
fundamental properties of the video dataset
proposed in the given smart transportation
analytics system. The datasets were taken mainly
in the form of the Al City Challenge Dataset (Track
1), which provides high-resolution videos that are
shot at several intersections. It has a wide range of
traffic conditions, such as different densities of
vehicles and pedestrians and different brightness,

Electronics, Communications, and Computing Summit | Oct - Dec 2024

so it is perfect to use it to compare the
performance of detection and tracking objects.

4.2 Model Architecture

The edge analytics pipeline draws two
fundamental deep learning elements, as shown in
Figure 3: Edge-Based Video Analytics Pipeline with
YOLOvV5 and DeepSORT.

YOLOv5: This is a light weighted version of
the You Only Look Once object detector,
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YOLOv5 was chosen because of its fast
inference speed and ability to detect small to
medium size size objects e.g. vehicles and
pedestrians. It also supports deployment via
TensorRT on NVIDIA Jetson TX2 devices with
the real-time inference capabilities.

. DeepSORT: In tracking of multiple moments,
DeepSORT (Simple Online and Realtime

Tracking with a Deep Association Metric) was
used. It uses motion and appearance to apply
consistent identities between video frames,
permitting persistence in trajectories despite
partial occlusion as well as high objects
density.
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Figure 3. Edge-Based Video Analytics Pipeline with YOLOv5 and DeepSORT

The figure represents the edge analytics pipeline of
a real-time video analysis in the smart
transportation systems. It starts with YOLOv5 as
object detector, and moves to TensorRT to optimize
inference on embedded hardware. Optimized
outcomes are afterwards supplied into DeepSORT
modules to perform multi-point tracking, and the
trajectory association is secure with diverse traffic
circumstances.

4.3 Evaluation Metrics

The effectiveness of the system and its operational

viability were analyzed using the key evaluation

measures depicted in the Figure 4: Key Evaluation

Metrics of the Edge-Based Video Analytics:

e Latency (ms): Measurement of end to end
processing delay between frame capture in

video to a final detection and tracking result at
the edge node.

e Accuracy (Intersection over Union, IoU):
measures the precision of the detection to look
at how consistent the bounding boxes that are
speculated compare with the annotation of the
real thing.

e Bandwidth Usage (Mbps): The performance
measurement that tests network performance
by observing the average rate in which edges
nodes to the cloud pass the intended data.

e System Scalability: Examines how well the
system does, relative to the amount of edge
nodes that are currently on and active,
particularly throughput stability, how well tasks
are offloaded, and response times.
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Figure 4. Key Evaluation Metrics for Edge-Based Video Analytics
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This figure represents the four major metrics
applied to figure out the performance of the edge-
based video analytics system: (1) Latency (ms) -
determines processing delay, end to end; (2)
Accuracy (IoU) - calculates the accuracy of
detection given using the Intersection over Union;
(3) Bandwidth Usage (Mbps) - indicates the
efficiency of the network on the basis of the rate of
data transmission; and (4) Scalability of the
System- scores the system based on the ability to
effectively process multiple concurrent edge nodes.
All these metrics give a complete overview of how
feasible the proposed architecture would be in
deploying in latency-sensitive urban traffic
monitoring applications of large scale.

5. RESULTS AND DISCUSSION

The comparative analysis of the performance
analysis of the usual cloud-based processing and
the proposed edge-based video analytics
architecture shows the significant improvement in
some of the most relevant parameters. The average
latency of edge-based deployment was brought
down to 260 ms, which is 45.8 percent less than
that of 480 ms of the cloud-based model as
presented in Table 1 and shown in Figure 5. This
high degree of reduction evidences the benefit of
local inference abilities, which preclude the round-
trip communications time lag usually involved in
cloud offloading. Also, edge-based system has a
bandwidth utilisation of 5.0 Mbps, which is far

below the capacity of continuous video streaming
to the cloud of 12.3 Mbps. Its performance is
largely attributed to the fact that metadata is
processed locally and not raw video locations, and
thus the solution is ideally suited even where
bandwidth is a concern in a smart city
environment.

Although, the accuracy of object detection had
dropped slightly to 87.9% when implemented
through edge devices with limited compute
capabilities compared to a higher percentage of
88.4% when implemented through the cloud. Such
trade-off confirms the efficiency of the lightweight
YOLOv5 model optimized with TensorRT to
perform real-time edge inference. The system
architecture, which includes the edge-based one,
supported 19 fps compared to the 14-fps achieved
by the cloud configuration in throughput
performance. This will make the process of video
analysis much smoother as well as help the system
process more intense traffic situations without
dropping the frames or experiencing delays.
Furthermore, the scalability of the architecture
was confirmed by conducting multi-node
simulations, where the frame rate and latency did
not worsen, when more edge nodes were added.
This proves the strong ability of the system to be
used in distributed deployments, which
strengthens its possible wide-scale usage on urban
traffic monitoring and smart transportation
propositions.

Table 1. Performance Comparison between Cloud-Based and Proposed Edge-Based Architectures

Metric Cloud-Based | Proposed Edge-Based
Average Latency (ms) 480 260

Bandwidth Usage (Mbps) 12.3 5.0

Object Detection Accuracy (%) | 88.4 87.9

Frame Processing Rate (fps) 14 19
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Figure 5. Comparison of Cloud-Based vs. Edge-Based Architecture
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6. CONCLUSION AND FUTURE WORK

The proposed work in this study is a flexible edge-
based framework that is suitable to real-time video
analysis in smart transportation systems. The
framework wunder consideration dramatically
lowers latency, bandwidth use, and allows making
real-time decisions based on local context at the
edge of the network by offloading computational
tasks to edge nodes that are either closer or even
at the data source rather than running them on
centralized cloud servers. Such features are
especially beneficial to signal-sensitive systems
like traffic surveillance, incident reporting, and
flexibility of signals in the city.

The fact that the architecture promises to reach
high detection accuracy and frame processing rates
even when operating under resource-constrained
environments shows the viability of the
architecture in practice. Further, it has a modular
and decentralized characteristic guaranteeing a
strong degree of scaling over geographically
dispersed nodes a quality which will make it
applicable in future implementation of intelligent
transportation. The next research lines will be
addressed to the introduction of dynamic resource
orchestration frameworks, that allows intelligent
task offloading and dynamic workload balancing
across heterogeneous edge devices. Furthermore,
it will look into having integration with Vehicle-to-
Everything (V2X) communication protocols in
order to achieve cooperative perception and
coordinated responses between the infrastructure
as well as the vehicular nodes. In order to make the
system more robust, procedure will also be
conducted to test the system under occlusion, poor
visibility caused by adverse weather as well as
sensor noise, in the unfortunate circumstances that
may occur in the real world.

Energy efficiency and thermals The following are
the energy efficiency and thermal considerations
The result is outlined below.

Although the designed edge-based architecture
translates to major latency gains, bandwidth
consumption and scalability, the energy
consumption of the edge deployment is an aspect
of consideration especially in real-life applications
involving embedded models such as the NVIDIA
Jetson TX2. These products are working on limited
power ranges, particularly, when they are used in
outdoor or unmanned roadside conditions.
Because GPU-accelerated inference takes place in
real-time, the characteristic issue with raising
thermal outputs (along with increasing power
consumption) when sustained processing loads are
maintained is the situation. More tests in the future
will involve a profiling of energy consumption by
the system when placed under a different amount
of traffic to assess thermal reliability over time.
Also, the energy performance will be incorporated

with dynamic workload scheduling, model
quantization, and sleep-state transitions strategies
to produce energy effectiveness without
performance being sacrificed. The long-term
stability of an edge environment in the system can
further be enhanced by applying thermal-
conscious task migration and dynamic throttling
control units.
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