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 The paper describes a low-power architecture for running lightweight 
Convolutional Neural Network (CNN) operations in edge AI machines 
with limited resources. User machines are built using fixed-point 
multiply-accumulate (MAC) units, clock gating, on-chip SRAM buffers, 
loop tiling and quantization-aware mapping to decrease dynamic power 
usage and ensure less use of external memory. The architecture is 
described in Verilog/SystemVerilog and implemented on both FPGA 
(Artix-7, Cyclone V) and ASIC (65nm CMOS) technologies. Testing 
experiments on CIFAR-10 and MNIST show that power decrease 40% 
and there is 30% more throughput with less than 1.5% accuracy drop. It 
is designed for real-time monitoring of situations and health and it 
forms a basis for upcoming neuromorphic and reconfigurable AI 
accelerators. 
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1. INTRODUCTION 
Since more processing is happening at the edge in 
real time, it is now very important for deep 
learning models to be deployed efficiently on 
devices with limited resources. Many vision tasks 
depend on CNNs, but these networks require a lot 
of computing power and energy which means they 
do not work well with battery-powered devices. 
Therefore, energy-saving hardware structures 
should be made to preserve both accuracy and 
speed. It addresses these difficulties by designing a 
custom VLSI architecture specific to lightweight 
CNN models which provides an effective way to 
perform energy-efficient edge AI in real-time. 
 
1.1 Challenge and Proposed Architecture 
Due to how hard it is for CNNs to operate on edge 
devices due to their high requirements for both 
computation and power, deploying them there is 
not easy. We put forward a power-efficient VLSI 
architecture that enables running quantized 
Convolutional Neural Networks (CNNs). MacLief 
includes fixed-point MAC cores, clock gates, RAM 
and is created with quantization in mind, to help 
save power and reduce how much memory is 
needed. 

1.2 Evaluation and Future Prospects 
Tests performed on both FPGA and ASIC boards 
confirm that the architecture makes energy use, 
latency and throughput better. Applications range 
from health checking devices worn on the body to 
surveillance through technology. Neuromorphic 
computing, dynamic reconfigurable hardware and 
hardware-software co-design may be added in the 
future for more effective edge intelligence. 

 

 
Figure 1. Energy-Efficient VLSI Architecture for  

Lightweight CNN Inference on EDGE devices 
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2. LITERATURE REVIEW 
Thanks to advances in CNNs such as SqueezeNet, 
MobileNet and ShuffleNet, deep learning models 
now require much less computing power, making 
it possible to run them on, for example, 
smartphones. Despite this, software models by 
themselves are usually not enough to fulfill the 
strict real-time and power factors needed in 
mobile applications. Even so, Google Edge TPU and 
Eyeriss were made to study how efficiency could 
be improved by using quantization and different 
dataflows, but they had limited use due to being 
propietary or restricted to prototyping (Chen, 
Emer, & Sze, 2017). As well, standalone techniques 
such as loop tiling, clock gating and quantization-
aware mapping have helped optimize individual 
parts, though they are usually used separately 
rather than together in a whole design. Current 

solutions are not very effective at combining model 
compression, reducing memory access and 
managing energy use and they have not been 
tested widely on various devices. Lately, 
researchers have tackled these issues by 
developing TinyissimoYOLO (Moosmann et al. 
2023), ULEEN (Susskind et al. 2023) and DietCNN 
(Dey et al. 2023) which aim to use little power. On 
the basis of these advancements, the paper 
proposes a single VLSI architecture for fixed-point 
multiplier-accumulator (MAC) units, free SRAM 
buffers for data reuse and an energy-efficient 
circuit, tested in both FPGA and ASIC 
environments. The idea is to develop an approach 
that powers efficient CNN operations for deploying 
AI models in edge systems (Jain, Jain, & Shukla, 
2022). 

 
Table 1. Comparative Analysis of Existing Edge AI Inference Solutions vs. Proposed Energy-Efficient VLSI 

Architecture 
Feature / Method Google Edge TPU Eyeriss SqueezeNet/MobileNet Proposed Architecture 

Model Type Fixed Function (8-
bit) 

Generic CNN Lightweight CNN Lightweight CNN (Q-aware) 

Quantization Support Yes (8-bit only) Yes No (model only) Yes (Q-aware mapping) 

Clock/Power Gating No Limited Depends on HW Yes 

On-Chip Memory 
Reuse 

Limited Yes No Yes (Loop Tiling + SRAM) 

Dataflow 
Optimization 

Hardware 
Quantized 

Row-
Stationary 

Model Compression PE-level + SRAM Buffer 

Flexibility (Edge 
Deployment) 

Low (Proprietary) Moderate High (software-level) High (FPGA/ASIC) 

Implementation 
Platform 

ASIC ASIC Software only FPGA + ASIC 

Real Dataset 
Validation 

Yes (limited) Yes (academic) Yes Yes (CIFAR-10, MNIST) 

Power Reduction ~30% ~35% Model-level only ~40% 

Throughput 
Improvement 

~25% ~20% Model-level only ~30% 

 
3.METHODOLOGY 
This section outlines the architectural and design 
strategies employed to develop a low-power, high-

efficiency VLSI accelerator tailored for lightweight 
CNN models in edge environments. 
 

 

 
Figure 2. Design Methodology for Energy-Efficient CNN Hardware Implementation 
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3.1 Selection of CNN Model 
Because edge environments often have limited 
computing power, SqueezeNet is used because it 
has few parameters and is lightweight. CIFAR-10 
and MNIST datasets are used to train and quantize 
the model which allows it to use fixed-point math 
without using much memory, power or silicon area 
when running on hardware. 
A common linear quantization formula used in 
CNN hardware is: 

xq = round  
xf − z

s
     − − − −− − − −− − − −

− − 1  
 

 
Figure 3. Workflow for CNN Model Preparation 

and Quantization for VLSI Implementation 
 
3.2 Hardware Architecture Design 
The structure of the proposed VLSI architecture is 
designed for lower power consumption in edge 
devices, considering fixed-point Operations 
Elements (PEs), a memory system using 
hierarchical SRAM and an efficient control unit. 
The architecture reduces how much energy is used 
by switching less frequently and using local data 
and the control unit organizes data traffic and 
chooses when to use power gating. All of these 
strategies banded together lead to low electricity, 
less access to memory and better performance 
with varying computations. 
 
3.2.1 MAC Operation Count 
The total number of multiply-accumulate (MAC) 
operations in a CNN layer is given by: 

MACslayer = OH  ×  OW  ×  OC  ×  KH  ×  KW  ×  IC

− − − −− − − − 2  
 
3.2.2 Dynamic Power Estimation for Switching 
Activity 
Dynamic power in VLSI is mainly due to switching 
activity and is approximated by: 

Pdyn = a . CL  . Vdd
2  . f − − − − − −− − − −− −

− − 3  
 
3.2.3 Memory Access Energy 
Energy consumed by memory access (for SRAM) 
can be modeled as: 

                 Emem =  Naccess   .  Eper _access − − −− − −

− − − −− − 4  
 

 
Figure 4. Proposed VLSI Architecture 

 
3.3 Power Optimization Techniques 
Clock gating is used in the mentioned VLSI design 
to reduce power waste by turning off PEs that are 
not currently used. Using loop tiling and reusing 
data reduces memory access and optimized 
mapping helps create compact representations 
that use less power and silicon on edge AI systems 
at the same level of accuracy. 
 
3.3.1. Dynamic Power Reduction with Clock 
Gating 
Clock gating reduces dynamic power by disabling 
clocks to idle units: 

Pdyn = a . CL  . Vdd
2  . f − − − − − −− − − −− −

− − 5  
 
3.3.2. Memory Access Energy Model 
To evaluate the effectiveness of loop tiling and 
data reuse, use: 
Emem =  Naccess

ext  . Eext + Naccess
sram  . Esram −− − − −

− − −−  6  
 
3.3.3. Quantization-Induced Energy Reduction 
The energy per operation decreases with 
reduced bit-width. The approximate energy 
savings from quantization can be modeled as: 

                                        Eop  ∞ n2 − −− − − −− −

− − −− − − −  7  

 
Figure 5. Power Optimization Techniques for 
Energy-Efficient Edge AI VLSI Architectures 
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3.4 Implementation Platform 
The hardware is developed at RTL using 
Verilog/SystemVerilog for accurate handling of 
data and timing. It is compiled with Synopsys 
Design Compiler for ASIC and with Xilinx Vivado 
for FPGA. Power estimation done on real CNN 
workloads makes sure the energy efficiency of the 
design is tested accurately for real edge 
applications. 
 
3.4.1. Dynamic Power Estimation (Post-
Synthesis Simulation) 
The most fundamental and widely used equation 
in RTL-to-GDSII flows is: 

Pdyn = a . CL  . Vdd
2  . f − − − − − −− − − −− −

−  8  
 
3.4.2. Total Power Estimation (for ASIC) 
ASIC tools provide: 

Ptotal =  Pdyn +  Pshort −circuit + Pleakage − − −−

− − − − −  9  
 
3.4.3. Area Estimation Equation 
A basic estimation for area based on gate 
equivalents (GE) is: 

Areamm 2 =  NGE   .  AGE − −− − − −− − − −
− − 10  

 
3.4.4. Throughput Estimation 
If you know clock frequency fff and the number of 
cycles per inferenceCinf :  

Throughput=
f

C inf
− − − −− − − − −− − − −

− 11  
 

 
Figure 6. Implementation and Power  Analysis 

Flow for CNN VLSI Architecture 
 
3.5 Evaluation Metrics 
When evaluating the proposed design, focus on its: 
power requirement (mW), the amount of time a 
task takes to complete (ms), how many operations 
it can handle (MACs/sec or FPS) and the amount of 
area needed to run the design (mm² or LUTs). To 
check accuracy, the results from fixed-point 
calculations are compared against floating-point 
baselines to confirm that better efficiency does not 
reduce performance. 

3.5.1. Power Consumption 
Measured during post-synthesis or simulation: 
Pdyn = a . CL  . Vdd

2  . f − − − − − − −− − − −− 12  

 
3.5.2. Inference Latency 
Latency is the total time to process a single input 
(e.g., an image): 

Latency=
𝐂𝐭𝐨𝐭𝐚𝐥

𝐟
−− − − − −− − − −− − − − −

− 13  
 
3.5.3. Throughput 
Throughput can be expressed in two common 
forms: 

 MACs per second (MAC/s): 

ThroughputMAC =  
Total MACs

Latency
− − − − −− − −

− − − −− (14) 

 Frames per second (FPS): 

ThroughputFPS =  
1

Latency (s)
− − − − − −− −

− (15) 
 
3.5.4. Area Utilization 
For ASIC: 

AreaASIC = NGE  .  AGE − − −− − − −− − (16) 
 
3.5.5. Accuracy Deviation 
Comparing fixed-point vs. floating-point inference 
accuracy: 
Accuracy Deviation= Accfloat  − Accfixed  − − −
− − −(17) 
 

 
Figure 7. Key Evaluation Metrics for CNN 

Hardware Implementation on Edge Devices 
 
4.Proposed VLSI Architecture 
A new VLSI architecture is created with careful 
design to allow lightweight CNNs to run with less 
energy on edge devices. CNN layers including 
convolution, pooling and activation are targeted for 
optimization using dedicated hardware. Special 
hardware is designed with multiple, parallel 
processing elements (PEs) that carry out multiply-
accumulate (MAC) calculations with few switches 
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being activated. Furthermore, to save on access to 
external memory and cut power costs, the 
architecture holds input feature maps, 
intermediate results and weights in on-chip SRAM 
buffers for easy reuse. Besides, reducing the 
number of bits in model parameters and 
activations with quantization helps use less energy  
and space. Clock gating is how dynamic power 
optimization happens and architectural power 
gating and voltage scaling support edge devices by 

extending battery life when working with less 
demanding applications. Modeling the design in 
Verilog/SystemVerilog and synthesizing it with 
Synopsys Design Compiler for ASIC and Xilinx 
Vivado for FPGA allows it to be used in different 
hardware platforms. As a result such architecture 
offers a suitable middle ground between accurate 
results, high performance and power efficiency, 
making it perfect for edge AI use. 
 

 

 
Figure 8. Datapath Architecture of the Proposed CNN VLSI Accelerator 

 
5.Experimental Setup 
The VLSI architecture is proven in practise by 
running it on FPGA and ASIC devices to give full 
versatility for edge scenarios. FPGA prototyping 
relies on Xilinx Artix-7 and Intel Cyclone V boards 
and ASIC synthesis uses a common 65nm CMOS 
technology node for investigating physical design 
features. Usually, MNIST and CIFAR-10 datasets are 
used to test the system, as these are based on 
typical low- and medium-complexity vision tasks. 
Lightweight CNN models are trained on these 

datasets so they can be implemented on different 
hardware. The main performance metrics used are 
the chip’s energy consumption (in mW), the time it 
takes to make an inference (in ms), data 
throughput rate (in MACs/sec or FPS) and how 
much area is occupied in the chip (mm² for ASICs 
or FPGA resources). It allows a thorough 
examination of how well the architecture does in 
terms of responsiveness, handling large volumes of 
data and processing quickly at the edge. 

 
Table 2. Hardware Resource Utilization and Performance Metrics on FPGA and ASIC Platforms 

Metric Xilinx Artix-7 Intel Cyclone V ASIC (65nm) 
LUTs Used 8,320 9,110 — 
Flip-Flops 7,015 7,845 — 
DSP Blocks 60 64 — 
Power (mW) 75 78 62 (post-layout) 
Area (mm² / GE) — — 0.92 mm² / 92K GEs 
Max Throughput (FPS) 520 498 535 

Clock Frequency (MHz) 100 90 120 

 
6. RESULTS AND DISCUSSION 
Proposed VLSI architecture is tested next to 
existing accelerators to check its benefits in 
performance and ease of use for AI in edge 
computing. It is apparent from doing comparative 
analysis that both power and performance metrics 
have improved. More crucially, the design achieves 
a 40% less power consumption and a rise in 
throughput of about 30% when compared to 
regular CNN accelerators. It is due to including 

fixed-point processing elements, designing for low 
quantization errors and using clock gating to make 
fewer switches. The accuracy decreases only by a 
little (1 to 2%) when using aggressive 
optimization, but in edge environments it is 
acceptable since energy efficiency is important. 
According to the evaluation, the architecture 
supports accurate inference without using much 
power which is valuable for places where 
resources and delays matter a lot. 
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Table 3. Performance Comparison Between Baseline and Proposed VLSI Architecture 
Metric Baseline Proposed Improvement 
Power (mW) 125 75 ↓ 40% 
Latency (ms) 20 14 ↓ 30% 
Throughput (MACs/s) 400M 520M ↑ 30% 
Accuracy (%) 90.5 89.0 -1.5% (acceptable loss) 

 

 
Figure 9. Performance Comparison of Baseline vs. 

Proposed VLSI Architecture 
 
7.CONCLUSION AND FUTURE WORK 
It detailed a brand-new VLSI architecture designed 
for low-power and space-efficient CNN inference 
on mobile devices that must handle strict power 
restrictions. Because of the MAC units, 
quantization-aware mapping, clock gating and 
hierarchical memory structures, the design uses 
less power and takes up less space, while accessing 
RAM with less burden. The architecture was tested 
on both FPGA and ASIC platforms, reducing power 
usage by up to 40% and increasing the throughput 
by 30%, while losing very little accuracy (below 
1.5%) compared to common datasets such as 
MNIST and CIFAR-10. The outcomes have 
demonstrated that the architecture is suitable for 
real-time edge roles, for example in smart 
monitoring, health watches and Internet-
connected vision-based embedded systems. 
More studies will concentrate on adding flexibility 
to the architecture using changes in dataflows and 
control at runtime, allowing dynamic scaling of 
workloads in multiple edge situations. In addition, 
the study will look into using neuromorphic 
approaches and event-driven methods which can 
help use even less power when data is sparse. 
Frameworks for developing hardware-software 
together will be created to optimize the scheduling 
and use of resources so that compressed and 
quantized CNN models work well after being 
deployed. So, the platform supports scalable 
development of tomorrow’s intelligent AI systems, 
focused on energy conservation. 
 
8.FUTURE SCOPE 
Based on the proposed energy-efficient design for 
VLSI, there are many promising options to improve 
how well it can be adapted and scaled for cutting-

edge edge AI. To start, using spiking neural 
networks (SNNs) and event-based processing in 
neuromorphic computing can lower power usage 
in very low-energy systems, allowing for 
continuous inference in wearables and sensor 
networks. Also, the architecture is flexible enough 
to handle dynamic changes in the applications and 
how much power is consumed. 
Also, if hardware-software co-design 
methodologies are adopted, it will be much easier 
to port compressed and quantized models from 
frameworks (like TensorFlow Lite and TVM) to 
RTL, enhancing how efficiently they are deployed. 
Employing new fabrication techniques such as 
FinFET and FD-SOI and transferring the design to 
more advanced nodes (for example, 28nm and 
16nm), might result in smaller size and lower 
leakage power. Also, combining computer vision, 
speech recognition and sensor data will make the 
architecture usable for a wide range of edge 
solutions, like autonomous drones, slices of smart 
industry and medical diagnosis. 
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