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The paper describes a low-power architecture for running lightweight
Convolutional Neural Network (CNN) operations in edge Al machines
with limited resources. User machines are built using fixed-point
multiply-accumulate (MAC) units, clock gating, on-chip SRAM buffers,
loop tiling and quantization-aware mapping to decrease dynamic power
usage and ensure less use of external memory. The architecture is
described in Verilog/SystemVerilog and implemented on both FPGA
(Artix-7, Cyclone V) and ASIC (65nm CMOS) technologies. Testing
experiments on CIFAR-10 and MNIST show that power decrease 40%
and there is 30% more throughput with less than 1.5% accuracy drop. It
is designed for real-time monitoring of situations and health and it
forms a basis for upcoming neuromorphic and reconfigurable Al
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accelerators.

1. INTRODUCTION

Since more processing is happening at the edge in
real time, it is now very important for deep
learning models to be deployed efficiently on
devices with limited resources. Many vision tasks
depend on CNNs, but these networks require a lot
of computing power and energy which means they
do not work well with battery-powered devices.
Therefore, energy-saving hardware structures
should be made to preserve both accuracy and
speed. It addresses these difficulties by designing a
custom VLSI architecture specific to lightweight
CNN models which provides an effective way to
perform energy-efficient edge Al in real-time.

1.1 Challenge and Proposed Architecture

Due to how hard it is for CNNs to operate on edge
devices due to their high requirements for both
computation and power, deploying them there is
not easy. We put forward a power-efficient VLSI
architecture that enables running quantized
Convolutional Neural Networks (CNNs). MacLief
includes fixed-point MAC cores, clock gates, RAM
and is created with quantization in mind, to help
save power and reduce how much memory is
needed.

1.2 Evaluation and Future Prospects

Tests performed on both FPGA and ASIC boards
confirm that the architecture makes energy use,
latency and throughput better. Applications range
from health checking devices worn on the body to
surveillance through technology. Neuromorphic
computing, dynamic reconfigurable hardware and
hardware-software co-design may be added in the
future for more effective edge intelligence.
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Figure 1. Energy-Efficient VLSI Architecture for
Lightweight CNN Inference on EDGE devices
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2. LITERATURE REVIEW

Thanks to advances in CNNs such as SqueezeNet,
MobileNet and ShuffleNet, deep learning models
now require much less computing power, making
it possible to run them on, for example,
smartphones. Despite this, software models by
themselves are usually not enough to fulfill the
strict real-time and power factors needed in
mobile applications. Even so, Google Edge TPU and
Eyeriss were made to study how efficiency could
be improved by using quantization and different
dataflows, but they had limited use due to being
propietary or restricted to prototyping (Chen,
Emer, & Sze, 2017). As well, standalone techniques
such as loop tiling, clock gating and quantization-
aware mapping have helped optimize individual
parts, though they are usually used separately
rather than together in a whole design. Current

solutions are not very effective at combining model
compression, reducing memory access and
managing energy use and they have not been
tested widely on various devices. Lately,
researchers have tackled these issues by
developing TinyissimoYOLO (Moosmann et al.
2023), ULEEN (Susskind et al. 2023) and DietCNN
(Dey et al. 2023) which aim to use little power. On
the basis of these advancements, the paper
proposes a single VLSI architecture for fixed-point
multiplier-accumulator (MAC) units, free SRAM
buffers for data reuse and an energy-efficient
circuit, tested in both FPGA and ASIC
environments. The idea is to develop an approach
that powers efficient CNN operations for deploying
Al models in edge systems (Jain, Jain, & Shukla,
2022).

Table 1. Comparative Analysis of Existing Edge Al Inference Solutions vs. Proposed Energy-Efficient VLSI

Architecture

Feature / Method Google Edge TPU Eyeriss SqueezeNet/MobileNet Proposed Architecture
Model Type Fixed Function (8- | Generic CNN Lightweight CNN Lightweight CNN (Q-aware)

bit)
Quantization Support | Yes (8-bit only) Yes No (model only) Yes (Q-aware mapping)
Clock/Power Gating No Limited Depends on HW Yes
On-Chip Memory | Limited Yes No Yes (Loop Tiling + SRAM)
Reuse
Dataflow Hardware Row- Model Compression PE-level + SRAM Buffer
Optimization Quantized Stationary
Flexibility (Edge | Low (Proprietary) Moderate High (software-level) High (FPGA/ASIC)
Deployment)
Implementation ASIC ASIC Software only FPGA + ASIC
Platform
Real Dataset | Yes (limited) Yes (academic) | Yes Yes (CIFAR-10, MNIST)
Validation
Power Reduction ~30% ~35% Model-level only ~40%
Throughput ~25% ~20% Model-level only ~30%
Improvement

3.METHODOLOGY
This section outlines the architectural and design
strategies employed to develop a low-power, high-

efficiency VLSI accelerator tailored for lightweight
CNN models in edge environments.
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Figure 2. Design Methodology for Energy-Efficient CNN Hardware Implementation
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3.1 Selection of CNN Model

Because edge environments often have limited
computing power, SqueezeNet is used because it
has few parameters and is lightweight. CIFAR-10
and MNIST datasets are used to train and quantize
the model which allows it to use fixed-point math
without using much memory, power or silicon area
when running on hardware.

A common linear quantization formula used in
CNN hardware is:

Xf —Z
Xq = round( )

Select compact CNN model
{e.g. SqueezeNet, MobileNet)

d

Train on standard dataset
{e.g. CIFAR-10, MNIST)

Enable fixed-point arithmetic
for VLSI implementaction

Figure 3. Workflow for CNN Model Preparation
and Quantization for VLSI Implementation

3.2 Hardware Architecture Design

The structure of the proposed VLSI architecture is
designed for lower power consumption in edge
devices, considering fixed-point Operations
Elements (PEs), a memory system using
hierarchical SRAM and an efficient control unit.
The architecture reduces how much energy is used
by switching less frequently and using local data
and the control unit organizes data traffic and
chooses when to use power gating. All of these
strategies banded together lead to low electricity,
less access to memory and better performance
with varying computations.

3.2.1 MAC Operation Count
The total number of multiply-accumulate (MAC)
operations in a CNN layer is given by:

MACspyer = Oy X Oy X O¢ X Ky X Ky X I¢

3.2.2 Dynamic Power Estimation for Switching
Activity

Dynamic power in VLSI is mainly due to switching
activity and is approximated by:

3.2.3 Memory Access Energy
Energy consumed by memory access (for SRAM)
can be modeled as:

Emem =

MAC MAC

MAC MAC

CONTROL UNIT

$

ON-CHIP SRAM

Figure 4. Proposed VLSI Architecture

3.3 Power Optimization Techniques

Clock gating is used in the mentioned VLSI design
to reduce power waste by turning off PEs that are
not currently used. Using loop tiling and reusing
data reduces memory access and optimized
mapping helps create compact representations
that use less power and silicon on edge Al systems
at the same level of accuracy.

3.3.1. Dynamic Power Reduction with Clock
Gating

Clock gating reduces dynamic power by disabling
clocks to idle units:

3.3.2. Memory Access Energy Model

To evaluate the effectiveness of loop tiling and
data reuse, use:

Emem = Ng()l((t:eSS 'Eext + N;E%g;S 'Esram _____

O]

3.3.3. Quantization-Induced Energy Reduction
The energy per operation decreases with
reduced bit-width. The approximate energy
savings from quantization can be modeled as:

2
Eppoon® ————————
——————— )
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weights and
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Figure 5. Power Optimization Techniques for
Energy-Efficient Edge Al VLSI Architectures

Electronics, Communications, and Computing Summit | Oct - Dec 2024 61



A.Surendar et al / Energy-Efficient VLSI Architecture for Lightweight CNN Inference on Edge Devices

3.4 Implementation Platform

The hardware is developed at RTL using
Verilog/SystemVerilog for accurate handling of
data and timing. It is compiled with Synopsys
Design Compiler for ASIC and with Xilinx Vivado
for FPGA. Power estimation done on real CNN
workloads makes sure the energy efficiency of the

design is tested accurately for real edge
applications.
3.4.1. Dynamic Power Estimation (Post-

Synthesis Simulation)
The most fundamental and widely used equation
in RTL-to-GDSII flows is:

3.4.2. Total Power Estimation (for ASIC)
ASIC tools provide:

den + Pohort —circuit T Pleakage -

- —---®

Ptotal =

3.4.3. Area Estimation Equation
A basic estimation for area based on gate
equivalents (GE) is:
Area,, 2 = Ngg . Agg - 1 —————————
- —(10)

3.4.4. Throughput Estimation
If you know clock frequency fff and the number of
cycles per inferenceC;:

Throughput=C d
-(1D
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Figure 6. Implementation and Power Analysis
Flow for CNN VLSI Architecture

3.5 Evaluation Metrics

When evaluating the proposed design, focus on its:
power requirement (mW), the amount of time a
task takes to complete (ms), how many operations
it can handle (MACs/sec or FPS) and the amount of
area needed to run the design (mm? or LUTSs). To
check accuracy, the results from fixed-point
calculations are compared against floating-point
baselines to confirm that better efficiency does not
reduce performance.

3.5.1. Power Consumption
Measured during post-synthesis or simulation:

3.5.2. Inference Latency

Latency is the total time to process a single input
(e.g, an image)

Ctotal

Latency—
—(13)

3.5.3. Throughput
Throughput can be expressed in two common
forms:

e MACs per second (MAC/s):

Th hput _ Total MAG;
Foughpiimac = Latency
————— (14)
e Frames per second (FPS):
1
Th h = ———— =
roughputres Latency (s)
- (15)

3.5.4. Area Utilization
For ASIC:
AI‘eaASlC = NGE .

3.5.5. Accuracy Deviation
Comparing fixed-point vs. floating-point inference
accuracy:

Accuracy Deviation=|Accpya

-——17)
Evaluation
Metrics

Power Consumption
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Figure 7. Key Evaluation Metrics for CNN
Hardware Implementation on Edge Devices

4.Proposed VLSI Architecture

A new VLSI architecture is created with careful
design to allow lightweight CNNs to run with less
energy on edge devices. CNN layers including
convolution, pooling and activation are targeted for
optimization using dedicated hardware. Special
hardware is designed with multiple, parallel
processing elements (PEs) that carry out multiply-
accumulate (MAC) calculations with few switches

62 Electronics, Communications, and Computing Summit | Oct - Dec 2024



A.Surendar et al / Energy-Efficient VLSI Architecture for Lightweight CNN Inference on Edge Devices

being activated. Furthermore, to save on access to
external memory and cut power costs, the
architecture  holds input feature  maps,
intermediate results and weights in on-chip SRAM
buffers for easy reuse. Besides, reducing the
number of bits in model parameters and
activations with quantization helps use less energy
and space. Clock gating is how dynamic power
optimization happens and architectural power
gating and voltage scaling support edge devices by

extending battery life when working with less
demanding applications. Modeling the design in
Verilog/SystemVerilog and synthesizing it with
Synopsys Design Compiler for ASIC and Xilinx
Vivado for FPGA allows it to be used in different
hardware platforms. As a result such architecture
offers a suitable middle ground between accurate
results, high performance and power efficiency,
making it perfect for edge Al use.

Input Feature
Buffers
(SRAM)

Weights
(SRAM)

Fixed-Point
MAC Units
(Parallel PEs for Conv Op)

Activation +
Pooling

Control Unit
(Clock Gating, Dataflow )

Figure 8. Datapath Architecture of the Proposed CNN VLSI Accelerator

5.Experimental Setup

The VLSI architecture is proven in practise by
running it on FPGA and ASIC devices to give full
versatility for edge scenarios. FPGA prototyping
relies on Xilinx Artix-7 and Intel Cyclone V boards
and ASIC synthesis uses a common 65nm CMOS
technology node for investigating physical design
features. Usually, MNIST and CIFAR-10 datasets are
used to test the system, as these are based on
typical low- and medium-complexity vision tasks.
Lightweight CNN models are trained on these

datasets so they can be implemented on different
hardware. The main performance metrics used are
the chip’s energy consumption (in mW), the time it
takes to make an inference (in ms), data
throughput rate (in MACs/sec or FPS) and how
much area is occupied in the chip (mm? for ASICs
or FPGA resources). It allows a thorough
examination of how well the architecture does in
terms of responsiveness, handling large volumes of
data and processing quickly at the edge.

Table 2. Hardware Resource Utilization and Performance Metrics on FPGA and ASIC Platforms

Metric Xilinx Artix-7 Intel Cyclone V ASIC (65nm)

LUTs Used 8,320 9,110 —

Flip-Flops 7,015 7,845 —

DSP Blocks 60 64 —

Power (mW) 75 78 62 (post-layout)
Area (mm? / GE) — — 0.92 mm? / 92K GEs
Max Throughput (FPS) 520 498 535

Clock Frequency (MHz) 100 90 120

6. RESULTS AND DISCUSSION

Proposed VLSI architecture is tested next to
existing accelerators to check its benefits in
performance and ease of use for Al in edge
computing. It is apparent from doing comparative
analysis that both power and performance metrics
have improved. More crucially, the design achieves
a 40% less power consumption and a rise in
throughput of about 30% when compared to
regular CNN accelerators. It is due to including

fixed-point processing elements, designing for low
quantization errors and using clock gating to make
fewer switches. The accuracy decreases only by a
little (1 to 2%) when wusing aggressive
optimization, but in edge environments it is
acceptable since energy efficiency is important.
According to the evaluation, the architecture
supports accurate inference without using much
power which is valuable for places where
resources and delays matter a lot.

Electronics, Communications, and Computing Summit | Oct - Dec 2024 63



A.Surendar et al / Energy-Efficient VLSI Architecture for Lightweight CNN Inference on Edge Devices

Table 3. Performance Comparison Between Baseline and Proposed VLSI Architecture

Metric Baseline | Proposed | Improvement

Power (mW) 125 75 1 40%

Latency (ms) 20 14 130%

Throughput (MACs/s) | 400M 520M T30%

Accuracy (%) 90.5 89.0 -1.5% (acceptable loss)

aselin
500 . Proposed

400

100

0

Power (mW)

Latency (ms) Throughput (MACs/s)
Performance Metric

Accuracy (%)

Figure 9. Performance Comparison of Baseline vs.
Proposed VLSI Architecture

7.CONCLUSION AND FUTURE WORK

It detailed a brand-new VLSI architecture designed
for low-power and space-efficient CNN inference
on mobile devices that must handle strict power
restrictions. Because of the MAC units,
quantization-aware mapping, clock gating and
hierarchical memory structures, the design uses
less power and takes up less space, while accessing
RAM with less burden. The architecture was tested
on both FPGA and ASIC platforms, reducing power
usage by up to 40% and increasing the throughput
by 30%, while losing very little accuracy (below
1.5%) compared to common datasets such as
MNIST and CIFAR-10. The outcomes have
demonstrated that the architecture is suitable for
real-time edge roles, for example in smart
monitoring, health watches and Internet-
connected vision-based embedded systems.

More studies will concentrate on adding flexibility
to the architecture using changes in dataflows and
control at runtime, allowing dynamic scaling of
workloads in multiple edge situations. In addition,
the study will look into using neuromorphic
approaches and event-driven methods which can
help use even less power when data is sparse.
Frameworks for developing hardware-software
together will be created to optimize the scheduling
and use of resources so that compressed and
quantized CNN models work well after being
deployed. So, the platform supports scalable
development of tomorrow’s intelligent Al systems,
focused on energy conservation.

8.FUTURE SCOPE

Based on the proposed energy-efficient design for
VLS]I, there are many promising options to improve
how well it can be adapted and scaled for cutting-
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edge edge Al To start, using spiking neural
networks (SNNs) and event-based processing in
neuromorphic computing can lower power usage
in very low-energy systems, allowing for
continuous inference in wearables and sensor
networks. Also, the architecture is flexible enough
to handle dynamic changes in the applications and
how much power is consumed.

Also, if hardware-software co-design
methodologies are adopted, it will be much easier
to port compressed and quantized models from
frameworks (like TensorFlow Lite and TVM) to
RTL, enhancing how efficiently they are deployed.
Employing new fabrication techniques such as
FinFET and FD-SOI and transferring the design to
more advanced nodes (for example, 28nm and
16nm), might result in smaller size and lower
leakage power. Also, combining computer vision,
speech recognition and sensor data will make the
architecture usable for a wide range of edge
solutions, like autonomous drones, slices of smart
industry and medical diagnosis.
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