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In the VLSI physical design with sub-5 nm process technologies in view,
wherein considered goals such as chip area, interconnect timing, power
consumption and thermal integrity become irrevocably intertwined into
the mix, the area of such a search grows exponentially as well making
the task of effective floorplanning one that requires a solution that
balances opposing goals. In the first stage, AI-MOEA-FP is a hybrid
framework based on the Graph Neural Network (GNN) surrogate model
and the latest state-of-the-art multi-objective evolutionary algorithm,
NSGA-II, to provide faster exploration of the Pareto-front relative to
floorplanning tasks in the 5nm radius and below. To begin with, a small
slicing-tree genotype contains in its genes each of the modules of
candidates by their position and orientation. Second, instead of running
a complete EDA flow per evaluation, our GNN surrogate which has been
trained on 50,000 industry-level floorplans can quickly approximate 4
fitness metrics (total area, estimated worst-case signal delay, peak
power density, and maximum thermal deviation) with less than 3%
mean error absolute. Third, we implement a strategy that makes use of a
certain degree of confidence: low-uncertainty candidates and those
close to the evolving Pareto front are re-scored with the golden-engine
to remove any surrogate bias, whereas the rest will just use the GNN,
saving costly engine calls by about 70 percent.On three suites of
benchmarks (ISPD stay including five circuits of 20-50 modules each
and two resized MCNC designs), AI-MOEA-FP converges to high-quality
Pareto fronts in a speed more than The proof of our ablation studies
shows that the surrogate and confidence filter are needed: canceling one
of these leads up to 6 percent reduction or nearly 2 times the runtime of
final solution quality.AI-MOEA-FP demonstrates that it is possible to use
Al to guide the evolution of physical design with high confidence in
resulting quality with one hundred times less cost in evaluation by using
the surrogate, resulting in a full path towards Al-guided physical design
in future technology nodes. Adaptive online retraining of new floorplan
patterns and heterogeneous integration of standard cells, macros and
soft IP blocks are planned in the future.

1. INTRODUCTION

between the functional blocks and of arranging

Incessant scaling of the CMOS integrated circuit to
below 5 nm node has transformed the computing
performance and power consumption, but it has
also presented stalwart challenges in VLSI physical
design. Interconnect wire resistance and process
variation increases exponentially at these
dimensions resulting in timing uncertainty and
signal integrity challenges. Meanwhile the highly
integrated transistors introduce local thermal hot
spots that are permitted to exceed material
reliability limits, and continuing power constraints
require designs that sensitively trade off leakage
power and switching power demands. Here,
floorplanning, the problem of divid the chip area

them with respect with each other, becomes a
major establishing block: as the number of
modules increases, the search space becomes
combinatorial, and soon becomes intractable when
even two objectives (such area and timing) are
considered.

The usual design flows of the EDA traditionally
focus on physical design purposes in isolation.
Single-objective placement at older nodes has been
shown to be successful with simulated annealing
and with partition-driven methods, though timing
or congestion can be optimized with analytic
solutions (quadratic programming or linear
programming) with area fixed. They are based
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however on hand-tuned cost functions or
weightings that provide little information about
the actual Pareto trade-offs and necessitate large
parameter sweeps. Consequently, addressing the
full design space of optimum area, timing, power,
and thermal requirements of sub-5 nm designs
requires such a more adaptable and multi-goal
approach.

Multi-Objective Evolutionary Algorithms (MOEAs)
including NSGA-II have become the effective tools
that can shed more light on Pareto fronts that
occur across incompatible measures. Making use of
nondominated sorting and by ensures that there is
sufficient diversity among candidate solutions,
NSGA-II has the capability to optimize many
objectives simultaneously without prior
specification of any weighting factors. The Achilles
heel of MOEAs in VLSI remains the cost of fitness
evaluation: calling a commercial physical-design
engine takes tens of seconds to minutes in order to
compute accurate area, wirelength, timing slack,
power density, and thermal profiles of each
individual specimen, and this is far too slow to
afford realistic chips in practice.

Fortunately, recent advances in machine learning
machine learning- Graph Neural Networks (GNNs)
trained on compact graphical encodings of partial
floorplans provide a solution to this by learning
surrogate models that can be used to obtain core
physical metrics. Surrogates trained to a large
corpus of engine tested layouts can estimate
wirelength, congestion, power distributions, and
even thermally hot spots in milliseconds, and with
mean absolute errors commonly less than 3%.
Incorporation of such GNN surrogates into the
MOEA loop allows a fast preliminary assessment of
the poor designs to remove them and a cost-
effective effort is confined to the most plausible
designs.

This is hence our contribution, a hybrid
framework, AI-MOEA-FP that combines the
exploration capabilities of the NSGA-II with the
rapidity of surrogate assessment provided by
GNNs. Candidate floorplans are represented as a
concise binary slicing tree that is consumed by a
five-layer GNN together with module area and
aspect-ratio information, as well as direct
adjacency information, to produce prediction
errors of less than 3% and within 5 ms of the four
most important objectives (total area, worst-case
delay, peak power density, and maximum thermal
deviation). In order to provide fidelity to the
surrogates, we use a confidence-based hybrid
assessment: prediction uncertainty is estimated
using Monte Carlo dropout, and only candidates
with low prediction uncertainty or lying on the
growing Pareto front are re-evaluated using the
high-fidelity EDA engine, and all the rest are

evaluated using only the GNN and thus amount of
calls to the high-fidelity engine decreased by
approximately 70 percent without affecting
solution quality. We compare and evaluate Al-
MOEA-FP against three industrial-grade sample
benchmark suites comprising sub-5 nm (ISPD
2019 with 5 ASIC-scale circuits, and 2 upscaled
MCNC block designs) against two baselines
consisting of wvanilla NSGA-II and simulated
annealing in terms of convergence speed-up by 4x,
and area-time hypervolume increase by 10-15
percent.

The AI-MOEA-FP framework may be used in a
broad range of physical-design applications: it
speeds floorplanning of System-on-Chip (SoC)
systems by rapidly exploring configurations of
compute, memory, [/O blocks under aggressive
area and thermal constraints; it supports 3D-IC
and heterogeneous integration by co-optimizing
layer stacking and through-silicon-via (TSV)
placement to balance thermal and minimize
interconnect requirements; it aids configurable 1P-
block integration by quickly scoping across and
evaluation of alternative macro-cell configurations
(e.g., DSPs Combining Al-driven surrogates and
powerful evolutionary search, AI-MOEA-FP leaves
the designers capable of exploring the
multidimensional trade-off space of sub-5nm VLSI
in hours instead of days.

2. RELATED WORK

2.1 Deterministic and Heuristic Floorplanning
The most common techniques of traditional
approach to floorplanning involve analytic and
heuristic approaches. Weighted sum Simulated
annealing (SA) frameworks model floorplan cost as
a weighted combination of floorplan objectives-
typically area, wirelength and aspect ratio; they
make stochastic moves on a representation such as
slicing-tree or sequence-pair to explore the space
of minimum-cost floorplans [3]. Although SA is
able to give high quality single-objective
optimizations, carefully tuned temperature
schedules, the weight of the cost-functions make
the multi-objective extensions brittle: the designer
must first tune the weighting of objectives by hand,
and often sacrifices Pareto diversity in pursuit of a
few favourite weight sets. There exist analytic
placement methods in which timing and
congestion are formulated as quadratic or linear
programs and thus can be optimized rapidly via a
gradient based method under area constraints that
are treated as constants [4]. Nevertheless, these
approaches are not ideal when objectives are
highly incompatible (i.e. when area and thermal
compliance objectives disagree), and they are not
inherently optimal unless bifurcated repeatedly
with different parameter values.
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2.2 Evolutionary Algorithms in Physical Design
Highlights Multi-Objective Evolutionary Algorithms
(MOEAs) mitigate these restrictions as they
concurrently evolve populations of prospective
layouts without necessarily calling for productivity
assignments that have been fixed in advance. The
caption of Deb et al., NSGA-II algorithm, employs
nondominated sorting and crowding-distance
selection, which ensures a diverse Pareto front in
terms of multiple objectives [1]. In VLSI
floorplanning, NSGA-II has been wused to
co-optimize chip area, interconnect delay and
power with good results compared to weighted-
sum SA in terms of diversity and quality of trade-
offs [5]. However, every iteration of the MOEA
would typically call a complete EDA engine to
compute accurate values: particularly timing slack
and temperature distributions, so times go into the
days range for industrial scale PEs with advanced
nodes. Ramifications to lower this cost through
incremental evaluation or top-down coarse-
grained engines have limited effect of speeding up
evaluations and may suffer evaluation bias that
lowers accuracy of final solutions.

2.3 Machine-Learning Surrogates for EDA
Recent machine-learning methods provide an
alternative to learning high-fidelity surrogates of
EDA tool outputs, rapidly. Graph Neural Networks
(GNNs) in particular, represent an area where the
netlist and a floorplan can be naturally modeled as
graphs, and then metrics (such as the total
wirelength and congestion) can be predicted as
mean absolute errors less than 5 percent on
held-out designs [6]. On the same note,
convolutional methods that have already been
conditioned with floorplan images and proximity-
thermal heat maps will be able to predict hot spot
patterns in a matter of milliseconds [7].
Surrogate-guided MOEAs are used outside VLSI,
where they have hastened optimization in
mechanical design and bioinformatics by
discarding unpromising candidates prior to more
costly finite-element or sequence-alignment
analysis. Nonetheless, there are the unique
challenges associated with such surrogates when
integrated into VLSI MOEAs: their prediction
uncertainty should be handled to avoid the drift
with regards to veritable Pareto fronts, and they
need to account in detail the complex
dependencies of current sub-5 nm processes.
Although the usefulness of GNN surrogates
towards estimating placement quality has been
previously shown in preliminary studies, little has
been done to incorporate them into an
evolutionary  framework  with  confidence
consideration of floorplane entire multi-objective
programming, and AI-MOEA-FP has a strong case
to fill that gap.

3. Preliminaries

3.1 Problem Formulation

The bare minimum is that the floorplanning
problem of a netlist N having modules M={m1, ...,
mn} is one trying to answer the question of not just
the spatial coordinates (xiyi) but also the
orientation oi, of each module mi so as to optimize
a few competing objectives at once. This gives four
objective functions: fi, the total chip area covered
by the bounding box of all modules; f. the
estimated worst-case signal delay along critical
nets in N, which depends on interconnect length
and placements of modules; f3 the peak power
density or a hotspot region where switching
activity and leakage interact and fs the max
thermal deviation or the greatest temperature
difference induced by uneven power dissipation.
Individually, these objectives need to be reduced
with the final result being a Pareto front of
solutions of trade-offs. Design is further dictated
by a no-overlap requirement, that two module
bounding boxes cannot overlap, and the bounding-
box constraints that restrict all of the modules to
be within the outline of the die. This is the
formulation that turns floorplanning into a multi
objective, high dimensional, combinatorial
optimization problem and at the same time makes
finding a globally optimal solution to all four
objectives computationally intractable by brute
force because of the exponential explosion in the
number of possible arrangements.

3.2 NSGA-II Overview

one such multi-objective evolutionary algorithm is
NSGA-II which explores a population of P
candidate solutions across G generations to
describe the Pareto front of a problem. Every
member of a population codes a floorplan using a
representation called slicing-tree: A sequence of
ordered tree which proceeds into internal nodes
representing either horizontal or vertical cuts and
leaf nodes representing modules mi. At every
generation NSGA-II computes the four objective
functions,fi though fs+ associated with every
individual, either by employing a surrogate or a
high-fidelity engine. The algorithm will then carry
out nondominated sorting, in which the
combination of parents and offspring is divided
into prioritized fronts under the Pareto-domin bet
(the first front will include the nondominated set,
the second will include all members of the
population that have a smaller Pareto dominance
compared to at least one member of the first one,
and so on). In the effort to maintain diversity along
the front, a crowding-distance measure is
calculated on each individual by NSGA-II, which
would approximate how near an individual is to its
neighbors in the objective space. In the choice of
individuals for the next set, lower ranked (more
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nondominated) individuals are favored and so is
one with larger crowding distance within same
front. Based on the slicing-tree genotype, genetic
operators which are crossover and mutation

placements. With successive generations, NSGA-II
steers the population to a heterogeneous and well
spread around representation or approximation of
the true Pareto front.
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Figure 1. Problem Formulation and Slicing Tree-Based Encoding in NSGA-II Framework
Fig. lllustration of the multi-objective floorplanning problem including thermal deviation, delay, and chip
area. The slicing tree encoding facilitates initial population generation and integration with NSGA-11
optimization for Pareto-front approximation.

4. Al-Accelerated MOEA Framework

4.1 Floorplan Encoding

In an attempt to thoroughly search the floorplan
search space, every prospective solution is
represented as a L=2n-1 (a binary slicing tree
where there are n modules). In this portray, the n
leaves are the person perceiving modules, and the
n-1 internal nodes are either the vertical or the
horizontal cutlines that cut the layout region. This
has the feature that a preorder traversal of the tree

produces a fixed-length genotype suitable to
standard genetic operators. In crossover,
exchanges subtrees of two parents, maintaining
valid slicing trees, whereas, mutation randomly
flips an orientation of a cutline, or swaps two leaf
nodes. This compact coding ensures that each child
is a possible, non-overlapping floorplan contained
in the die boundary and supports fast genetic
crossover that does not require time consuming
feasibility checks.
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Figure 2. Genetic Operators on Slicing Tree Representation
Slicing tree encoding of floorplans enables compact genetic representation and supports efficient crossover
and mutation while preserving layout feasibility.

4.2 GNN Surrogate Model

Instead of invoking a full EDA engine for every
candidate, we employ a graph neural network
surrogate to approximate four key metrics: total
chip area (f,), worst-case signal delay (f,), peak
power density (f;), and maximum thermal
deviation (f,). To this end, we convert the slicing
tree into a dual graph: each module is a node
enriched with features such as area, aspect ratio,
and orientation, while edges encode both physical
adjacency (shared cutline boundaries) and netlist
connectivity. The GNN architecture comprises five
graph-convolutional layers that propagate and

aggregate information across module and
adjacency edges, followed by a global pooling
operation that distills the entire floorplan into a
fixed-size embedding. A final multilayer
perceptron (MLP) head outputs the four scaled
metrics. Trained offline on 50,000 randomly
generated floorplans—each evaluated by a
commercial physical-design engine—the GNN
achieves under 3% mean absolute error on a held-
out test set, with inference times below 5 ms per
candidate, thereby offering an efficient proxy for
expensive engine calls.
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Figure 3. GNN-Based Surrogate Model Architecture
Graph neural network pipeline for floorplan evaluation. Node features (e.g., area, aspect ratio) are processed
via graph convolutions, followed by global pooling and a multi-layer perceptron to predict multi-objective
scores fi to fa.

4.3 Confidence-Driven Hybrid Evaluation

To consider the tradeoff between speed and
fidelity the AI-MOEA-FP uses confidence-based
assessment strategy in each generation. As we use
surrogate inference, to aggregate prediction
uncertainty we use Monte Carlo dropout: randomly
dropping network activations during test time. In

those cases where the surrogate-collected variance
is lower than a predetermined limit, or in any
design that happens to be on or close to the
current Pareto frontier, we resort to the high-
fidelity EDA evaluation with the formerly termed
Golden-Engine to give precise metric values.
Surrogate outputs are used by all the other
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candidates. This partial re-analysis removes any
possible surrogate bias in the most significant
designs without invoking unnecessary calls to the
engine of obviously questionable candidates.
Empirically, this strategy significantly minimises

full-engine calls (by 170), decreases the total
optimization run-time by a factor of four and
minimises the loss in the quality of the Pareto-
front to 1-2 percent of its all engine counterpart
run by NSGA-II.

(Candidate solution )

dropout inference

[Surrogate prediction]

Use GNN
output

Use full EDA
engine (Golden
evaluation)

Updated fitness values for
NSGA-II sorting

Figure 4. Hybrid Evaluation Strategy Using Surrogate Uncertainty
Decision flowchart illustrating how candidate solutions are evaluated during optimization. If the GNN
surrogate's prediction confidence (variance) is high, its output is used. Otherwise, the full EDA engine is
invoked to ensure accurate fitness computation.

5. Experimental Setup

5.1 Benchmark Suites

To assess accurately the performance of Al- MOEA
-FP, we wuse three sub 5 nm floorplanning
benchmarks that are typical of the industry. To
start with, the ISPD19 suite includes five ASIC-
scale designs, each with 20-50 hard modules
(example: processor cores, memory macros, and
accelerators), with an astral congestion of
interconnections. These benchmarks benchmark

connectivity patterns on which advanced-node SoC
designs used. Secondly, we add two scaled to the
MCNC block-level circuits original prototype
developed at 90 nm technology but now enlarged
with the aim of reproducing sub 5 nm cell and
metal sizes and, at the same time, maintaining
logical intactness. This is a mixed suite that enables
us to put AI-MOEA-FP to stress-testing at both full-
chip and block scenarios, which span a wide
spectrum in terms of module counts, aspect ratios,

realistic module sizes, aspect ratios, and and complexities of the nets lists.
Benchmark Statistics
ISPD’19 circults Module Avg. aspect | # Nets Technology
count ratio scaling
T H
C1 BT 20 1,08 600 5nm
T =]
c2 i l% 35 1,26 1300 5nm
ca iE_'_?ih_. 50 1,34 2100 5nm
= 40 1,10 1800 5nm
C4 | 25 1,26 900 5nm
c5 E%l B1 1,17 300 5nm
Resized MCNC B2 1,32 100 5nm
B1 - B1 1,17 300 5nm
B2 ILI 11 B2 1,32 100 5nm

Figure 5. Benchmark Suite Overview and Statistics
Overview of benchmark circuits used for evaluating AI-MOEA-FP, including ISPD’19 ASIC-scale designs (C1-
C5) and resized MCNC block-level circuits (B1, B2), with details on module count, average aspect ratio, net
count, and 5 nm technology scaling.
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5.2 Baseline Methods

We compare AI-MOEA-FP against three established

approaches:

e NSGA-II (Full EDA Evaluations): A vanilla
implementation of the nondominated sorting
genetic algorithm, where every candidate in
each generation is evaluated using the
commercial physical-design  engine to
compute exact area, timing slack, power
density, and thermal profiles. This baseline
represents the gold standard in multi-
objective floorplanning at the cost of high
runtime.

e SA-FP (Simulated Annealing
Floorplanner): A multi-objective simulated
annealing engine that optimizes a weighted

cost function combining chip area, estimated
wirelength, and thermal penalty. We tune
annealing schedules and weightings via grid
search to ensure competitive performance.
SA-FP provides insight into how heuristic
single-population methods fare against our
surrogate-augmented evolutionary search.

e GNN-Only Optimization: A strategy that uses
our trained GNN surrogate to score and rank
candidates in a single-pass greedy search,
without any high-fidelity engine calls or
evolutionary  operators. This  baseline
highlights the upper bound on speed-ups
achievable purely through surrogate inference
and underscores the value of guided
exploration.

NSGA-II SA-FP GNN-Only AI-MOEA-FP
Evaluation A -| D'g
method 0
2 i = = o o
Full engine Full engine Surrogate Hybrid
Exse: eu ::jon [ Evolutionary] Heuristic l None ] Evolutionar
Accuracy [D ' [ J | ]

Accuracy [Gold-standardJ [Approximate] Mpproximate] Eold-standard]

Figure 6. Evaluation Methodology Comparison
Comparison of evaluation techniques (full engine vs. hybrid vs. surrogate) across NSGA-11, SA-FE, GNN-only,
and AI-MOEA-FP

5.3 Evaluation Metrics and Environment

We measure performance across three key
dimensions:
1. Pareto Hypervolume: The normalized

hypervolume under the Pareto front in the
four-objective space (area, timing, power
density, thermal deviation), which quantifies
both convergence to the true front and
diversity of solutions.

2. Total Runtime: The wall-clock time from
algorithm start to termination (set at a fixed
number of generations or convergence
threshold), measured on a Linux server with
dual Intel Xeon Gold CPUs and an NVIDIA
A100 GPU (for GNN inference).

3. Average Engine Calls: The percentage of
candidates re-evaluated by the high-fidelity
engine, averaged over all generations. This
metric directly reflects the efficiency gains
from surrogate use and confidence-driven
screening.

All methods are run with identical population sizes

(100 individuals) and termination criteria (either

200 generations or no improvement in

hypervolume for 20 consecutive generations). We

perform five independent trials per benchmark to
account for stochastic variation and report mean
and standard deviation for each metric.
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E

Benchmark
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Initial Population Objective Metric
Generator Evaluator Collector
GNN Surrogate Hypervolume
— Runtime
EDA Engine Engine Calis

Report Generator

over 5 trials

Figure 7. Metric Collection and Analysis Pipeline
End-to-end evaluation pipeline: from benchmark netlist to metric collection and report generation.

6. RESULTS

AI-MOEA-FP achieves p-value<0.01 over all
measures which are hypervolume, runtime and
engine-call (Table 1). The vanilla NSGA-II uses 24 h
of run time to obtain a hypervolume of 0.642 and
the evaluation of all candidates with the high-

Normalized Score

fidelity engine (100% engine calls). An example of
optimality that AI-MOEA-FP performs better in the
hypervolume in comparison to other methods as
seen in Figure 6.1, and it decreases runtime usage
and frequency of engine calls dramatically.

Hypervolume (1)
B Runtime ()
B Engine Calls (1)

NSGA-II SA-FP

Al-MOEA-FP

GNN-only

Figure 8a. Multi-Metric Performance Comparison
Another benchmark shows that the simulated-annealing floorplanner (SA-FP) takes 18 h to produce a
hypervolume of 0.573 whereas the GNN-only strategy completes just in 1 h, absolutely zero engine calls were
made but it also produces the worst front (0.512 hypervolume). In comparison, AI-MOEA-FP achieves a
hypervolume of 0.712 after only 6 h with the full engine activated on only 30 percent of the candidates-
showing that surrogate-guided evolution has the capability of succeeding in finding better trade-offs at
radically reduced computational cost.

Convergence Speed

AI-MOEA-FP’'s  hybrid  evaluation

strategy
accelerates search convergence by a factor of four
compared to full-engine NSGA-IL.This trend is

illustrated in Figure 6.2, where AI-MOEA-FP
reaches 90% of its final hypervolume within 2
hours, while NSGA-II takes more than 15 hours.
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Figure 8b. Convergence Trend Over Time
Along all benchmarks, the AI-MOEA-FP achieves 90 percent of its eventual hypervolume once execution was
underway within the first two hours, but NSGA-II takes more than 15 hours to achieve the same point. This
has been shown to lead to such rapid convergence because the GNN surrogate can swiftly diffuse the bad
designs in such a way that the evolutionary algorithm can only dedicate mind-power in the most promising
side of the search space.

Pareto-Front Improvements

More than speed, solution quality is also improved
with AI-MOEA-FP. The framework averages a 12
percent improvement in the Area-timing Trade off
Hypervolume compared to NSGA-II, which is a
measure of improved packings and improved
critical per-path delays. In powerthermal, the

comparison of Pareto fronts is given,
demonstrating that AI-MOEA-FP outperforms
NSGA-II in areaobjects trade-offs. These
enhancements indicate the effectiveness of
selective high-fidelity evaluations that have been
made based on surrogate uncertainty in

maintaining and even improving the quality of

Pareto frontier changes by about 10 percent which  multi-objective = solutions as opposed to
implies more balanced power profiling and less conventional methods.
thermal hotspots. In Figure 6.3, a visual
75+ ® e NSGA-I
m  AI-MOEA-FP
° Improvement Zone
g70f = °
o
> [ ]
§ L]
E 65} = o
g . .
s 60
g - .
E n
2 55t e
o
bt - o
s
& sof . s
n
45} ]
100 110 120 130 140 150
Chip Area (normalized units)
Figure 8c. Pareto Front Comparison of Layout Solutions
Comparison of computational cost between GNN surrogate, full-engine evaluation, and hybrid evaluation
framework.
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Table 1. Performance comparison of optimization methods on sub-5 nm benchmarks.

Method Hypervolume T | Runtime (h) ! | Engine Calls {
NSGA-II 0.642 24 100%

SA-FP 0.573 18 N/A

GNN-only 0.512 1 0%
AI-MOEA-FP | 0.712 6 30%

7. DISCUSSION

The experimental performance shows that Al-
MOEA-FP is efficient to balance between explosion
and solution precision of sub-5 nm floorplanning.
With GNN surrogate trained on the costly EDA
engine evaluations it uses to eliminate poor quality
candidates quickly, allowing the evolutionary
search to commit its computational budget to the
hopeful regions of the design space. And the main
reason why AI-MOEA-FP outperforms vanilla
NSGA-II by 4x in runtime is this surrogate-based
pruning because this model takes about 0.1 ms to
verify each candidate, which is many orders of
magnitude less time than how long a single full
physical assessment takes (~30 s).

Most importantly, the confidence-based hybrid
assessment system guarantee that surrogate error
are not allowed to pile up uncontrollably. With
Monte Carlo dropout measuring of uncertainty of
prediction, AI-MOEA-FP can selectively re-evaluate
dominant or Pareto-front candidates using the
golden-engine. Such targeted sanity check
maintains the integrity of Pareto front: ablation
studies indicate that the loss of 6% final
hypervolume occurs with the omission of the
confidence filter, where a hidden bias created by
the surrogate bias subtly leads the population to
the less than optimal trade-offs. On the other hand,
using the engine only (i.e, standard NSGA-II)
would assure accuracy at the unacceptable price of
performing an evaluation exhaustively.

In addition to convergence rate and the quality of
the front, the results obtained by AI-MOEA-FP
show that there is a significant advancement in
certain trade-fan areas. The measured 12 percent
improvement to the area-timing hypervolume
shows that the framework does not only speed up
the search but also discovers previously unknown
layouts configuration that better compromise
between die size and critical-path delay than
before. The power-thermal frontier shift by ~10%,
in its turn, highlights the ability of the surrogate to
account for thermal interactions between modules,
which becomes ever more important at sub-5 nm
nodes with the hotspot mitigation as a major
design concern to reliability.

In spite of these advantages, there are a number of
limitations that need to be mentioned. First, the
surrogate model will be trained with randomly
generated floorplans; it will be calibrated to face
accuracy loss when aspect ratios of the modules
are very irregular or on new IP-block layout that

were not part of the training sample. This could
also be made more robust by including online
retraining or active learning: engine-verified
Pareto solutions are added to the data set of the
surrogate. Second, the structure of our modern
slicing-tree encoding is soft macro-centric and
explicitly does not deal with soft standard-cell
placements. Generalizing the genotype to a two-
level representation to incorporate macro block
and cell cluster information as well would
generalize AI-MOEA-FP to physical design flows at
full-chip scale.

Last, as much as our benchmarks target a range of
SoC and block-level designs, it will be critical that
commercial EDA toolchain integration support
interoperability of commercial formats like
DEF/LEF as well as support to incremental
updates through design closure. The next direction
will be the integration of APl with first-order
systems, as well as an expansion of hybrid
framework to 3D-IC and heterogeneous integration
levels- in such heterogenous combinations, multi-
layer trade-offs in thermal and interconnect
further add to optimization complexity. By needing
to work on such channels, AI-MOEA-FP could
become a generalized tool of Al-based physical
layout in the most advanced technology nodes.

8. CONCLUSION AND FUTURE WORK

We have proposed a new hybrid algorithm, Al-
MOEA-FP, which embeds the algorithm NSGA-II
and a graph neural network surrogate and hence
brought together the explorative framework of
mating with the speed to predict to meet the
daunting task of optimizing a multi-objective
floorplanning in a sub-5 nm VLSI layout. Inference
in < 5 ms and < 3% error is implemented by
encoding candidate layouts as compact slicing
trees, and using a five-layer GNN, enhanced with
both module features and connectivity
information, to propose layouts in seconds, more
often than not causing the evolutionary algorithm
to forego the more expensive call to the EDA
engine. Our confidence-based assessment plan
makes careful use of high-fidelity assessments of
uncertain or Pareto-front designs, reducing engine
invocations by almost 70 percent and cutting run
time by a factor of four. The results of experimental
validation of ISPD ISPD.19 and resized MCNC
benchmarks show the convergence time that is 4x
faster and area hyper volume of an area timing that
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is 10-15 percentage slack of state-of-the-art NSGA-
IT and simulated-annealing benchmarks.

Future Work

In the future we will widen the scope of AI-MOEA-
FP by applying its slicing-tree genotype to mixed
macro and standard-cell placements to full-chip
designs, and by incorporating active learning or
retraining to ensure the accuracy of the GNN
surrogate to new or out-of-distribution floorplan
patterns. We will moreover construct APIs, format
translators that permit easy integration into
commercial EDA flows (DEF/LEF/DB), and help IP-
level analysis such as in pre-silicon closure) and

heterogeneous floor planning and 3D-IC
floorplanning using multi-layer stacking and
thermally aware TSV  placement.  Such

improvements can make AI-MOEA-FP an engineful,
industrial ready tool that designers use to travel in
increasingly complex trade-off landscapes at future
advanced nodes with previously unmatched speed
and fidelity.
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