Electronics, Communications, and Computing Summit

Vol. 1, No. 1, Oct - Dec 2023, pp. 39-48

ISSN: 3107-8222, DOI: https://doi.org/10.17051/ECC/01.01.05

Cloud-Native Microservices for Next-Gen Computing
Applications and Scalable Architectures

F Rahman

Assistant Professor, Department of CS & IT, Kalinga University, Raipur, India,

Email: ku.frahman@kalingauniversity.ac.in

Article Info

ABSTRACT

Article history:

Received : 16.10.2023
Revised :21.11.2023
Accepted :17.12.2023

Keywords:

Microservices,
Cloud-Native Architecture,
Kubernetes,

Scalability,

Next-Gen Computing,
Edge Applications,

Service Mesh,

Devops

Cloud-native microservice applications have transformed the
realization of robust, elastic, and dynamically adaptable software
systems into next-generation computing architectures, including edge
computing, [oT, IoT, Al inference and high assurance enterprise
frameworks. This research paper is a thorough investigation of service
design, orchestration, performance optimization of the microservices
within cloud-native systems. The offered strategy relies on
containerized applications that are organized with the help of
Kubernetes where Istio is a service mesh framework that makes it
possible to accomplish superior traffic management, observability, and
secure communication via mTLS. A type of multi-layer architecture is
created, including API gates, independently deployable REST/gRPC
microservices, polyglot databases, and CI / CD pipelines based on
DevOps. End-to-end experimentation is done on behalf of the AWS
Elastic Kubernetes Service (EKS) and the microservice-based model
performs comparative tests against a typical monolithic app when
subjected to different workloads and the failure of elements. There is
empirical evidence of a strong performance improvement under this
approach: namely, average response latencies are reduced by 42
percent, request handling throughput have increased by 61 percent and
fault recovery time were improved by 71 percent. Efficiency of resource
utilization and horizontal scalability is significantly boosted, as well,
aided by automated autoscaling configurations. A commonly-used stack
is the observability stack (Prometheus, Grafana and Jaeger) that give
fine-grained insight into service behavior and allows proactive
performance tuning and fault diagnosis. Along with the benefits, the
issues of service sprawl, orchestration overhead, and service
communication management complexity are also realized. The
proposed paper comments on the methods to work around those
downfalls with lightweight sidecars, GitOps-allowed deployment
pipelines, and Al-augmented scaling processes. The presented
framework shows that cloud-native microservices could be used as a
base framework in developing a stable and futuristic digital
infrastructure solution, which can meet the changing computational
needs. Areas of future development will be the incorporation of
federated service meshes to orchestrate cross-cloud deployment,
reinforcement learning based autoscalers, and research and
development into zero-trust workloads such as those in the fields of
finance, healthcare, and smart manufacturing.

1. INTRODUCTION

not only needs to be scale and responsive, but

The developed speed of the development of digital
infrastructure and the spread of innovative models
of the role of computing in general, Artificial
Intelligence (Al), Machine Learning (ML), Internet
of Things (IoT), real-time analysis, and edge
computing in particular, profoundly changed the
design needs of contemporary software. It is
believed that these new generation computing
workloads require application whose dependency

must also be highly modular, fault tolerant as well
as have queasy fit to work in heterogeneous and
distributed environments. The old monolithic
systems which were effective in the earlier days
are becoming inadequate in addressing these
requirements because of their rigid nature, less
scalability, and prone to cascading failures. In
monolithic, functionality is tightly integrated as a
single deployment, it is highly impractical to

Electronics, Communications, and Computing Summit | Oct - Dec 2023 39

F Rahman et al / Cloud-Native Microservices for Next-Gen Computing Applications and Scalable
Architectures

independently scale, perform deployment on a
continuous scale and isolate faults.

To overcome those drawbacks, a new architectural
paradigm has gained predominance cloud-native
microservices architecture. The architecture of
cloud-native microservices bases applications on
the suite of loosely coupled deployable
independently services to communicate using
lightweight protocols like HTTP REST or gRPC.

Microservice is a business capability isolated in an
entity encapsulated by the own release and deploy,
and can be horizontally scaled depending on
requirement. Such services are conventionally
containerized (via frameworks such as Docker)
and orchestrated (with the help of tools such as
Kubernetes) that offer the ability to scale
automatically, distribute load, discover services,
and repair themselves.

(’\(\(’\(’\

Al/ML Edge Real-Time
Computing Analvtics

Camputing Cloud-Native Microservices
Paradigms

Mloroserwces
Components (_, c|/c|)
Key [Scalability] [Observabllity] [Resilience]
Considerations

Figure 1. Cloud-Native Microservices Architecture Enabling Next-Generation Computing Applications

Moreover, they adopt service meshes (e.g. Istio,
Linkerd) which introduces a potent context of
observability and traffic control and security on
top of which the platform engineers can route
through the complicated service-to-service
communication in a clear and efficient fashion. The
wonders of agility and reliability in deploying
microservices in cloud-native environments are
further strengthened by the DevOps processes and
Continuous Integration/Continuous Deployment
(CI/CD) pipeline and infrastructure-as-code (IaC)
approach in particular.

The goal of this paper is to offer an extensive
discussion of an effective way of designing and
deploying cloud-native microservices to facilitate
the next-gen computing applications. It brings
reference multi-layer architecture that is scalable,
observable, and resilient. Experimental
benchmarking is also included in the study that
shows the performance advantage of versioning
over monolithic applications. Among the main
contributions is a thorough performance testing
under production-scale workloads, how to use
observability tools as operational intelligence, and
solutions to typical problems of deployment like
service sprawl and orchestration complexity. The
suggested architecture is a plan of creating future
proof applications with ability to tackle dynamic
user requirements and technological changes.

2. LITERATURE REVIEW

The idea of microservices developed based on the
drawbacks of monolithic software development
approaches to feasible and changing needs in
application requirements. Among the first and
most significant works in that area is a work by
Newman (2015) who produced the term
microservices to represent a solution to achieve
agility, modularity, and deployment of services
independently. His activity was defining small,
business capability-driven services with a high
level of structure and autonomy, which improved
maintainability and team autonomy considerably.
But the examples of implementation were mainly
directed at air basic web applications, and the need
to meet the requirements of high-
performance/real-time systems, including the Al
inference and processing of [oT data.
Subsequently, Taibi et al. (2018) also managed to
contribute to the body of knowledge as they
explained migration patterns to microservices via
monoliths thoroughly using several industry-based
projects. They identified similar driving forces--
namely scalability, independent deployment cycles
and heterogeneities in technology. And even
though they provided wonderful perspectives on
architectural refactoring, they failed to provide
realistic performance benchmarks and did not test
system parameters like latency, throughput and
fault tolerance the metrics that are instrumental in

a0 Electronics, Communications, and Computing Summit | Oct - Dec 2023

F Rahman et al / Cloud-Native Microservices for Next-Gen Computing Applications and Scalable
Architectures

the validation of microservices in next-gen
computing systems. In a similar manner, Wang et
al. (2021) examined how container orchestration
can be deployed to deliver Al services, especially in
the deployment of machine learning models
through Kubernetes. Their study demonstrated
how orchestration facilitates resources scheduling
and versioning when applied to containerized
workloads, however did not consider advanced
service mesh features as mTLS, circuit braking and
observability to manage more complicated
communication topologies.

The current studies, including the work by Ali et al.
(2022), analyzed cloud-native architectures in 5G
core networks. Their experiments were able to
confirm the scalability and modularity of network
functions based on microservices as more effective
than the monolithic ones. However, the research
provided very little information on the operational
issues like fault detection, recovery latency and
distributed tracing on dynamic workloads. Review
of existing literature shows that although much
progress has been attained in implementing
microservices deployment and orchestration,
there still exist a niche that lacks resident holistic
studies incorporating real-time monitoring,
scalability testing and intelligent autoscaler
mechanism. The given paper fills these gaps with
proposing a unified microservice platform focusing
on observability, fault-resistance, and dynamic
scaling of the next-gen computing applications.

3. Proposed Cloud-Native Microservices
Framework

3.1 Architectural Overview

The offered type of cloud-native microservices
architecture is split into the modular and layered
system ready to be scalable, fault segregating, with
the real-time monitoring. It combines the best
approaches to service decomposition, container
orchestration, and observability to meet the needs
of dynamically-shifted computing environments
like the AI/ML processing, IoT data pipeline, and
real-time analytics platforms. The architecture
consists of the following important layers:
Frontend Gateway: The API Gateway is on the
entry point of this system where all external
clients and applications can only access it. Traffic
routing and load balancing, rate limiting,
authentication, and SSL termination is done using
tools such as Kong, NGINX or even Traefik. It is an
abstraction layer that hides client internal service
end points, and facilitates requests with URL paths
or header-based routing to the correct
microservices. It also enables the dynamic
discovery of the backend services that are
registered in Kubernetes so that the scalability and
handling of requests in a low-latency manner are
ensured.

Service Layer: It is the center of the application,
which consists of individually deployable and
scalable microservices. Every single microservice
that implements REST or gRP expects a particular
business capability, an instance of user
administration, invoicing, reporting, or
notifications. The Docker is used to containerize
the services and then orchestrated with the help of
Kubernetes, which manages the lifecycle of
applications that include health checks, rolling
updates, auto-restarts etc. Lightweight APIs
oversee the communication between services in
different services, where Istio enables such
features as load balancing, retries and service
discovery. The services are loosely coupled
enabling fault isolation, agile development and
continuous delivery.

Database Layer: The new architecture is polyglot
persistence where each microservice can use the
most suited database technology per its
requirements as necessitated by its functionality
and the nature of its information. This would mean
that this storage layer becomes service-specific
and this would lead to better performance and
elasticity. As an example, PostgreSQL will be
utilized to process transactional and relational
data, as it is ACID and has querying features;
MongoDB will be applicable to services which deal
with semi-structured or dynamic data mostly
expressed in a document format, where flexibility
provided by its schema and its read and write
performance are of importance; and InfluxDB will
be utilized to handle time-series data such as real-
time sensor data, system measures and so on, as it
performs well at storing and querying temporal
data. Allowing every microservice to have its own
dedicated datastore will encourage the use of
decentralized data ownership, and remove data
coupling between services and result in a higher
degree of scalability, since services could be scaled

independently = without affecting common
databases. Furthermore, the approach links
storage mechanisms to application context

resulting in data retrieval, maintainability, and
responsiveness of the systems when such systems
perform various workloads efficiently.

Observability Layer: The current state of
distributed systems, particularly the systems
based on microservices, require full observability
to maximize operational reliability, take advantage
of performance tuning, and speedy fault recovery.
Observability in the proposed architecture is also
enabled by the smooth combination of three
popular, open-source tools, which are Prometheus,
Grafana, and Jaeger, capable of providing full-stack
visibility. The Prometheus is the hub in collecting
the metrics data and it regularly scraps the real-
time data including CPU usage, memory utilization,
request latency and error rate of every

Electronics, Communications, and Computing Summit | Oct - Dec 2023 41

F Rahman et al / Cloud-Native Microservices for Next-Gen Computing Applications and Scalable
Architectures

microservice. Such measurements are further
visualized via Grafana that gives interactive
dashboards and customizable alerting systems
notifying engineers about abnormalities or
crossing the thresholds. So that to complement the
metric-based insights, Jaeger supports distributed
tracing, which means that the team can see which
requests make it through several services and
where it breaks down or slows down in detail. This
end-to-end, telemetry-based solution allows
developers and operations teams to better manage
the health of their systems by proactively
diagnosing the cause of problems, tuning
performance, and maintaining a high availability,
resilient, and quality of services in cloud-native
complex ecosystems.

Infrastructure Layer: The whole microservices
array runs on Kubernetes (k8s) which provides
container orchestration, self healing, auto scaling

as well as service discovery. The architecture also
uses Istio as service-mesh to be able to address

security and efficiency of cross-service
communication. Istio adds such advanced
capabilities as canary-based traffic splitting,
mutual TLS (mTLS) encryption, policy

enforcement, and fault injection to the chaos
engineering. This pairing gives a very robust and
safe frame to run microservices at scale.

This multi tier architecture has been made cloud-
agnostic and it can be implemented on platforms
like AWS EKS, Azure AKS, or Google GKE, to
support hybrid and multi-cloud strategies.
Independence between layers, modularity and
abstraction provide it with flexibility in the various
development and operational processes and thus
the system makes it perfect to process the
dynamics of high-throughput, low-latency and
fault-tolerant systems.

O

[

Client

|

API Gateway

Service Layer

Auth

L REST/gRPC

User

l

giing .. 4\

~
J mTLS

Observability

V[

J
¢ &
©

Prometheus Grafana Jaeger
Infrastructure
Kubernetes

Cloud-agnostic deployinennt on:

aws

/A Azure

AKS

S

GKE

Figure 2. Layered Cloud-Native Microservices Architecture with Service Mesh, Observability, and Cloud-
Agnostic Deployment

3.2 Features

One conspicuous advantage of the proposed cloud-
native microservices architecture is that it has the
inbuilt facility of supporting dynamic service
discovery and autonomous scalability which is
crucial in the management of the modern and
distributed style of applications. With DNS-based
service discovery provided by Kubernetes, every
microservice obtains a stable DNS name
automatically, enabling other services to find and
communicate with it (with the confidence that the
name will not change after a pod restart or due to a
change of node or horizontal scaling operation).
This saves endpoints that were hardcoded and

42

allows the microservices to interact in an
interchangeable way with each other in the cluster.
The architecture combines Horizontal Pod
Autoscaler (HPA) with Vertical Pod Autoscaler
(VPA) in order to ensure responsiveness of the
system in workload fluctuations. HPA scales pod
replicas in real time based upon the CPU, memory,
or application-specific metrics, but VPA scales
resource requests to optimize performance and
reduce overprovisioning. A combination of these
autoscaling mechanisms provides the system with
high availability and cost-effectiveness without
intervention by human operators across a burst in
traffic.

Electronics, Communications, and Computing Summit | Oct - Dec 2023

F Rahman et al / Cloud-Native Microservices for Next-Gen Computing Applications and Scalable
Architectures

The building of automation, security, and
transparency of operations within the operation of
CI/CD and multi-layer security controls also
prevails in the architecture. The system deploys
with GitOps configuration using ArgoCD, which
uses, as a version-control system, Git repositories
to store the desired infrastructure and application
states. Any modification in these repositories will
automatically be integrated into the Kubernetes
cluster, which makes it to have continuous
delivery, ability to roll back, and can be followed
on the deployment. To ensure security, Istio
employs mutual TLS (mTLS) to ensure that all
service-to-service communications are encrypted,

SERVICE DISCOVERY

auth default.svc.cluster.local

i @8

Service A

SECURITY

mTLs | Service A
mTLS

<

Cl/CD

billing default.sve. *. Service B
cluster local --... "~ — - &8 - %

again identity verification is enforced and any
chance of man-in-the-middle attack is eradicated.
Also, OAuth2z and OpenID Connect (OIDC)
standards are provisioned at the level of API
Gateway to implement safe user authentication
and authorization (usually together with identity
providers such as Keycloak or AuthO). The
combination of these characteristics also
guarantees that the architecture does not only
become scalable and responsive but also secure
and audible and satisfies the demands of
enterprise-scale, cloud native deployments across
sensitive areas, including finance, healthcare, and
industrial [oT.

AUTOSCALING

HPA
VPA

L
L
L

argoco
9 Kubernetes

APl GATEWAY

Figure 3. Feature-Centric View of Cloud-Native Microservices Architecture with Service Discovery,
Autoscaling, CI/CD, and Security Layers

4. METHODOLOGY

4.1 System Architecture Design

The system proposed is designed with the modern
cloud-native in mind focusing on modularity,
elasticity, and fault isolation to fulfill the needs of
the next-generation computing workloads. The
architecture will be run on Kubernetes (v1.27),
which acts as a container orchestrator foundation
and allows easy scalability, active recovery, and
declarative management of infrastructure and
application resources. The architecture consists
fundamentally of several loosely linked
microservices, each of which encapsulates a
particular business capability, e.g. authentication,
user management, billing, and analytics. Such
services are containerized with Docker, making
them behave those in development, testing, and
production environments and dependencies easier
to manage.

In order to coordinate and direct the management
of these containers at scale Kubernetes deals with
deployment, scheduling, health checks, rolling
updates and service discovery. Horizontal Pod
Autoscaler (HPA) implementation is used to
dynamically scale pod replicas of each
microservice by utilizing real-time CPU and
memory data to scale the system according to
different workloads. The most popular service
mesh platform Istio is connected to execute
service-to-service communication. It offers some
high-level functionality like traffic routing, circuit
breaking, retries, load balancing, and mutual TLS
(mTLS) to secure communications between
microservice. Istio is also very instrumental in
observability where it enables the collection of
telemetry data without having to modify
application code.

Electronics, Communications, and Computing Summit | Oct - Dec 2023 43

F Rahman et al / Cloud-Native Microservices for Next-Gen Computing Applications and Scalable
Architectures

O

- &

GitHub Kubemetes
-0 0-0
00 €¥—m
GitHub
Actions
00
€ =
& L5
~ HPA orgoco -
Docker ArgoCD A
T lHPA
i i I i
t Auth J [User] ["BiningJ [Analytics]

Istro

7 S

Service Routing

r
o

Promctheus

Grafana

!

Z

Q

Jaeger

7y

LQL@J

Figure 4. End-to-End System Architecture Design for Cloud-Native Microservices with CI/CD, Service
Mesh, and Observability Integration

This system embraces CI/CD pipeline powered by
GitOps using GitHub Action as automation tool and
ArgoCD as continuous deployment. Using this
strategy will allow the entire application and
infrastructure life-cycle to be on Git which is
declaratively managed, has traceability, version
control and can be rolled back easily. Observability
is a top-level consideration in the architecture; it is
carried out with the help of Prometheus serving
real-time metrics, Grafana providing interactive
dashboards and alerting, and Jaeger that provides
distributed tracing. All these tools offer a complete
picture of the system health, performance, and
inter-service latency, letting operators easily
recognize and fix the anomalies before they
themselves are identified by other tools. Taken
together, this architectural pattern is a scaleable,
safe, and resilient base upon which to deploy
microservices on cloud platforms where there are
high availability, high performance, and rapid
iteration requirements.

4.2 Experimental Setup

To compare the performance of the proposed
cloud-native microservices architecture, the
thorough experimental setting was created
mimicking real-life conditions of deployment and
load. On the Amazon Web Services (AWS) cloud,
the architecture was instantiated on the Amazon
Web Services (AWS) Elastic Kubernetes Service

44

(EKS), a fully managed Kubernetes platform with a
possibility to run a scalable, secure, and resilient
infra on containerized applications. The reason
that EKS was selected is that EKS has the
production-grade tools, includes native profiles
with a wide range of AWS services (including
Elastic Load Balancing and IAM) and was able to
support high availability zones within several
regions.

In this set-up two application architectures were
tested in a comparable manner:

» Monolithic Application: A legacy application
built using Java Spring Boot, deployed as a
single containerized unit. It encapsulates all
functionalities—authentication, user
management, billing, and reporting—in a
tightly coupled structure. This serves as a
baseline to measure the performance,
scalability, and fault tolerance of traditional
architectures.

Microservices Architecture: The same
monolithic application was refactored into
eight independently deployable
Microservices, each encapsulated in a
separate Docker container. These services
include modules for user management,
authentication, invoice processing, analytics,
logging, and email notifications, with inter-
service communication handled via REST and
gRPC protocols.

Electronics, Communications, and Computing Summit | Oct - Dec 2023

F Rahman et al / Cloud-Native Microservices for Next-Gen Computing Applications and Scalable

Architectures
Monolith Microsenrices
Load Testing (\ A
ava Auth User
B Locust g M] il
(B\ ([\
= Billi Analyti
SpringBoot Hing ‘ fred)

T

EKS

\ 7 \

/ B

Logging ‘ Email

2

g Prometheus

15 Grafana

Figure 5. Experimental Setup for Benchmarking Monolithic vs. Microservices Architectures on AWS EKS
with Load Testing and Observability Tools

The open-source performance testing tool Locust
was employed in order to conduct tests to emulate
real-life traffic patterns and user loads. Locust
could simulate as many as 5,000 simulated users
and produce HTTP-like traffic that includes write,
read and authentication requests. This was
because this high-concurrency testing assisted in
determining how the kind of architecture was able
to respond to traffic surges, contention, and the
degradation of services.

To track and analyze performance, Prometheus
was set up to scrape the metrics of CPU loads, the
consumption of memory, request latencies, and
HTTP response codes used in all services. The
gathered data were plotted on Grafana dashboards
where the system health can be monitored in real-
time and where possible bottle necks can be
pointed out. Such a configuration gave rich
observability into what happens in the system as it
got loaded making sure that qualitative and
quantitative conclusions could be drawn in the
benchmarking process.

4.3 Evaluation Metrics

In order to be able to accurately measure the
overall improvement in the performance and
scalability of the proposed microservices
architecture over the monolithic counterpart, a
range of evaluation metrics was chosen. Latency is
in milliseconds and it is an important measure of
system responsiveness and is computed as the
average time required by a system to respond to a
request made on it by the client. Less latency
means a directly corresponding user experience
improvement, particularly in a real-time
application like streaming, Internet of things (IoT),

or online transactions. The number of requests
that could be processed in one second given
positive results would denote the throughput since
it established the ability of the system to deal with
parallel workloads in the system. Increased
throughput indicates improved load-servicing
capacity, which is critical to applications with
unpredictable traffic or those used in a multi-user
scenario.

Besides the performance indicators, the evaluation
also contained the Recovery Time indicators (this
is the time needed when the system is trying to
recoup all functionality after the partial
breakdown or the crash of the service). The metric
is of particular significance to high-availability
systems in which downtimes should be brought to
less. Resource Utilization was observed namely the
CPU and memory usage to determine the measure
of efficiency in operating under different load
scenarios, so that the services will be able to scale
without the impairment of a lot of overhead
resources. Finally, Horizontal Scaling Efficiency
measures the capacity of a system to better its
performance with a multiple number of replicas. It
depicts the extent to which the architecture can
exploit the aspect of autoscaling on Kubernetes, a
factor that will be essential in terms of cost-
efficient deployment and elasticity. Together, these
metrics will give an overall picture of the way the
system behaves during stressful situations, is able
to recover after encounters with failures, and is
capable of adjusting to the variations in workload,
which will give us a clear idea of how suitable the
system is in size next-generation computing
applications.

Electronics, Communications, and Computing Summit | Oct - Dec 2023 45

F Rahman et al / Cloud-Native Microservices for Next-Gen Computing Applications and Scalable
Architectures

Table 1. Key Evaluation Metrics for Performance and Scalability Assessment of Microservices

Architecture
Metric Description
Latency (ms) Average response time for client requests; lower is better for
responsiveness.
Throughput (req/sec) Number of requests processed per second; higher indicates
better performance.

Recovery Time (s)
availability.

Time to restore services after failure; crucial for high

Resource Utilization (%)

CPU and memory consumption under load;
efficiency and scaling.

impacts

Scaling Efficiency (%)
via HPA.

Performance gain when replicas are added; reflects elasticity

5. RESULTS AND DISCUSSION

The results of the performance testing are rather
explicit, as they help to understand the benefits of
the suggested cloud-native microservices
architecture compared to the conventional
monolithic configuration. Table 1 demonstrates
that microservices-based system reduced an
average latency by 42.1 percent to 168 ms,
compared to 290 ms with the non-microservices-
based system. this decrease may be explained by
independent scaling of services and load balancing
provided by Kubernetes. In addition, throughput of
the system achieved a 61.3 percent increase,
running 1210 requests per second (rps) and 750
rps by the monolith, making the claim successful
considering how well it handles concurrency in
microservices. Markedly, the recovery time of a
fault was also significantly minimized-within a
range of 21 seconds as opposed to 6 seconds-
which is another example of fault isolation and
self-healing characteristics of the microservices
architecture. There was also improved resource
consumption and CPU load was decreased by
25.9% in microservices setup. However, the most
important aspect is that scaling efficiency more

than doubled, 43 percent in the monolith, and 82
percent in the microservices model, as
containerized services are self-scaling when there
is an increase in demand.

When it comes to observability, Prometheus,
Grafana, and Jaeger offered a great deal of

operational insight into all of the services.
Prometheus metrics demonstrated a similar
pattern in CPU/memory utilization, whereas

Jaeger made it possible to trace the chain and
identify that the performance of gRPC services
improved in terms of latency by a factor of 38%,
i.e. the time of finding upstream dependencies was
reduced. These observability tools enabled
engineers to see and follow request path through
various services in real time, easily identifying
bottlenecks, and points of failure. Such degree of
transparency that is hardly possible to implement
in monolithic models, adds to the system
resilience, quick debugging and active
performance tuning. Intelligent alerting rules and
automatic correction strategies could also be
configured, which increased system reliability with
the insights that the telemetry provided.

1200} 1210 Monolith
B Microservices
1000
L 800F
g
o
1}
5 600
w
(1]
L
s
400
290
2001 168
. 6 — |
&\) olo) ofo)
@) «@ Gl o el
< X N
se® S W o
\2 ov® o gg@‘
e .
Q & "

Figure 6. Comparative Performance Metrics of Monolithic vs. Microservices Architecture

46

Electronics, Communications, and Computing Summit | Oct - Dec 2023

F Rahman et al / Cloud-Native Microservices for Next-Gen Computing Applications and Scalable
Architectures

The issue of scalability tests supported the
architectural strengths under load. Through the
stress test, the microservices based deployment
scaled well all the way to 4000 RPS which is far
greater than the 1800 RPS that the monolithic
system displayed. Kubernetes Horizontal Pod
Autoscaler (HPA) enabled this behavior, and it was
able to scale the replicas of the services to demand,
ensuring that at least 95 percent synthetics uptime
was achieved even when under peak traffic. The
experimental evidence proves that microservices
have an enormous advantage of fault and
operational tolerance and deployment freedom.
These advantages however have their tradeoffs

which include higher architectural complexity,
slow start-up times as a result of operation with
distributed initialization, overheads caused by
service orchestration and sidecar proxies. Such
difficulties can be overcome with the help of
DevSecOps tooling, simplified deployment
pipelines, and lightweight services-mesh
implementations (e.g. Cilium with eBPF) that
impose least overhead but retain observability and
security. In general, the findings confirm the use of
microservices as an effective basis regarding the
further development of next-generation and cloud-
native computing platforms.

Table 2. Quantitative Performance Comparison of Monolithic and Microservices Architectures across Key

Metrics

Metric Monolithic Microservices Improvement

Architecture Architecture
Avg Latency | 290 168 at“42.1%
(ms)
Throughput 750 1210 at' 61.3%
(rps)
Recovery Time | 21 at“71.4%
(s)
CPU Utilization | 85 at“ 25.9%
(%)
Scaling 43 at90.7%
Efficiency (%)

7. CONCLUSION

The study has amply shown why the use of cloud-
native microservices would be effective and
practically useful in supporting next-generation
computing applications. The proposed architecture
was able to improve system scalability, fault
tolerance and resource efficiency many folds by
decomposing a monolithic application and
transformed to a set of modular services that can
be deployed independently and orchestrated on
Kubernetes. As compared to the experimental
benchmarking, microservices had a significant
decrease in latency over the original code and
recovery time, as well as improvement of
throughput and ability to be scaled horizontally
more responsively. The system was integrated
with observability tools like Prometheus, Grafana,
and Jaeger and thus, the services came with
excellent operations insights, which allows
proactive monitoring and diagnostic capabilities
absolutely vital to complex distributed systems.
Moreover, integration with service mesh
technology (Istio), GitOps- enabled CI/CD pipeline
(ArgoCD), and autoscaling (HPA / VPA) tools
helped in realizing a sound, stable, and secure
infrastructure. Whether it is the overhead of
orchestration and the complexity of the system,
this is compensated by the (flexibility,
maintainability, @ and responsiveness that

microservices provide in their architectures. Based
on its findings, the paper concludes that cloud-
native microservices offer a safe ground to make
future-ready digital ecospheres that can adjust to a
fluctuating workload in such areas as Al inference,
IoT, smart infrastructure and enterprise platforms.
Current research is engaged in expanding this
architecture to serverless microservices, federated
service mesh releases, Al-friendly orchestration,
and allowing even higher orders of decentralized
cloud-native scale, efficiency, and automation.

REFERENCES

1. Newman, S. (2015). Building Microservices.
O'Reilly Media.

2. Taibi, D., Lenarduzzi, V. &Pahl, C. (2018).
Processes, motivations, and issues for
migrating to microservices architectures.
IEEE Cloud Computing, 5(1), 22-32.

3. Wang, H,, Liu, Y, & Zhang,]. (2021). Container
orchestration for machine learning
microservices. Journal of Cloud Computing,
10(1), 1-13.

4. Ali, M, Singh, A, & Sharma, R. (2022).
Performance and scalability of 5G core
network with microservices. IEEE Access, 10,
10432-10445.

Electronics, Communications, and Computing Summit | Oct - Dec 2023 47

F Rahman et al / Cloud-Native Microservices for Next-Gen Computing Applications and Scalable
Architectures

10.

48

Dragoni, N. et al. (2017). Microservices:
Yesterday, today, and tomorrow. Present and
Ulterior Software Engineering, 195-216.
Richardson, C. (2021). Microservices Patterns.
Manning Publications.

Pahl, C., &Jamshidi, P. (2016). Microservices:
A systematic mapping study. CLOSER, 137-
146.

Morgan, T. (2020). Cloud Native DevOps with
Kubernetes. O'Reilly Media.

Red Hat. (2021). Istio and Kubernetes for
Cloud-Native Apps. https://www.redhat.com
Google Cloud. (2023). Anthos Service Mesh
Documentation.
https://cloud.google.com/anthos/service-
mesh

Electronics, Communications, and Computing Summit | Oct - Dec 2023

https://www.redhat.com/

