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Vahicular Ad Hoc Networks (VANETS) also introduce interesting issues
to provide reliable communication as a result of immense node mobility,
regular changing topologies as well as strict latency requirements. The
dynamical adaption to such conditions is frequently failing of the
traditional routing protocols. The given work proposes a new real-time
adaptive routing framework to optimize Software-Defined Networking
(SDN) with Graph Neural Networks (GNNs) in VANETSs to increase the
routing intelligence and scale. The SDN controller is able to see the
global, real-time topology of the network through receipt in distributed
roadside units (RSUs) of vehicular state and link measurements. This
information is then dynamically encoded to a spatiotemporal graph
structure, feed into a GNN architectural model that is trained in
predicting the optimal routing paths using current, and historical
mobility patterns. The potential GNN-SDN system is tested by co-
simulations based on the SUMO (to model the traffic) and Mininet-WiFi
(to emulate the network). The performance measures are studied under
different traffic rates and mobility conditions such as Packet Delivery
Ratio (PDR), end-to-end latency, and network throughput. Experimental
study shows that the GNN-assisted routing is significantly better than
AODV and DSR protocols as they can achieve an up to 27 percent higher
PDR and up to 35 percent lower delay in high-mobility urban networks.
This article shows the effectiveness of Artificial intelligence based SDN
control planes to solve VANETs routing complexities and leads to the
development of context-aware, highly scalable and tenacious
communication infrastructure essential to the delivery of autonomous
and connected transportation systems in 6G-supported smart cities and
V2X environments.

1. INTRODUCTION

inflexibility in urban VANET applications [3]. Such

Vehicular Ad Hoc Networks (VANETSs) are essential
elements of the prospective Intelligent
Transportation Systems (ITS), the important
abilities of which are autonomous driving, real-
time navigation, collision avoidance, and dynamic
traffic control. They allow a smooth interaction of
Vehicle-to-Vehicle (V2v) and Vehicle-to-
Infrastructure (V2I) communications, which are
critical to improving safety and efficient traffic flow
in an urban setting with high population density
[1]. Nevertheless, dynamically changing topology
of VANETs due to a high level of mobility in
vehicles, disconnect rates and link failures is a
source of critical problems regarding routing
stability, scalability and low-latency protocols [2].
Traditional routing protocols e.g.such as AODV,
DSR and GPSR are either reactive or location-
based. Although they provide lightweight
operations, they have intrinsic drawbacks of
having unreliable routes, convergence failures, and

limitations are more significant in the environment
where vehicle density is high and the topology is
constantly changing, and route recalculation
performed repeatedly worsens the network
overall.

Software-Defined Networking (SDN) increasingly
has emerged as an attractive paradigm to deal with
these challenges by decoupling the data plane and
the control plane. SDN facilitates the centralized
routing decisions, full visibility of the network in
the global sense, and dynamic enforcement of
policies [4]. Nevertheless, current SDN-based
designs are reactive and rule-based, and they do
not provide the kind of predictive intelligence that
is required to make a proactive routing choice in a
fast-changing VANET environment. The
development of Graph Neural Networks (GNNs) in
recent years is an especially promising approach to
learning spatiotemporal dynamics in traffic and
mobility graphs. GNNs can learn across dynamic
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topology and come to inference-driven decisions
on graph structured data. Research findings are
presented in [5] and [9], which prove the feasibility
of GNNs in the traffic flow forecasting and
mobility-aware resource optimization and indicate
that these models can be wused to learn
sophisticated vehicular dynamics in an urban
setting. Later, [12] published a GNN-SDN
architecture of VANETSs; however, the model has
been derived but it is not emulated or validated in
real time in realistic settings of vehicular
operations.

Research Gap and Motivation

Although progress is independent in the SDN-

based VANET control and the GNN-based graph

learning, there is a significant lack of research in
the synergetic combination of both towards real-
time adaptive routing. The main problems are:

. Absence of a centralized architecture that
would integrate the predictive potential of
GNN and the centralized control of SDN;

. Lack of real-time validation schemes that
combine traffic simulators (e.g. SUMO) and
network emulators (e.g. Mininet - WiFi);

. Scalability and inference latency in
application of GNN models in high-density
mobility conditions.

Objective and Contribution

The given paper suggests a real-time adaptive
routing framework that combines SDN and GNN to
dynamically forecast and execute optimal route in
VANETSs. The proposed system empowers proactive
(through encoding vehicular mobility data into
spatiotemporal graph  structures), scalable
(through inference on graphs based on GNNs) and
automatically map-aware routing. The resulting
means to an end is to certify the solution via co-
simulations with SUMO and Mininet-WiFi and
compare its efficiency in the most essential
performance parameters such as Packet Delivery
Ratio (PDR), end-to-end latency, and network
bandwidth under the different conditions of
vehicles.

Key Contributions

1. A novel SDN-GNN hybrid routing architecture
tailored for dynamic urban VANETS.

2. Real-time graph construction and training
pipeline using synthetic and emulated
mobility data.

3. Performance comparison against AODV and
DSR, showing up to 27% improvement in PDR
and 35% reduction in latency.

4. Analysis of scalability, model inference
latency, and potential for 6G V2X integration.

5. Implementation of a real-time decision
feedback loop with potential for edge-

deployable GNN inference, enhancing
responsiveness and deployment feasibility in
resource-constrained vehicular environments.

2. RELATED WORK

AODV, DSR and GPSR have been relied upon by
Vehicular Ad Hoc Networks (VANETs) over the
past. These protocols are either geographic or
reactive, and they are made to work based on the
localized decision-making [4], [8]. Dynamic routing
protocols such as AODV and DSR do not
dynamically attempt to discover routes until such a
time as a route is requested, and have low
scalability and high route discovery latency in
dense urban environments. One matter thus
handled by GPSR is a location-based protocol,
which provides improved latency through the use
of positional information, but it does not exhibit
good robustness under sparse or dynamically
obstructed conditions [11]. In order to address the
shortcomings of decentralized protocols, the
Software-Defined Networking (SDN) 1is an
alternative paradigm proposed. SDN separates the
control plane and data plane and makes routing
decisions in a central location and provides the
overall picture of the network. This supports real
time monitoring, dynamically allocated path and
policy oriented traffic control. Works like [3], [8]
have already proven that SDN is useful in
improving the flexibility/responsiveness of
routing. The SDN however, becomes less flexible in
highly dynamic vehicular environments and prone
to inflexibility to sudden topology change due to
the reactive or rule-based logic it is enforced to
work with.

At the same time Graph Neural Networks (GNNs)
have found wide application in learning on
structured data like road networks and traffic
graphs. GNNs such as Spatio-temporal GNNs (ST-
GCN) & Gated Graph Neural Networks (GGNN) are
able to extract latent features of vehicular mobility
patterns and network topology to forecast traffic
flow or infer routing. e.g, GNNs in congestion
prediction and the control over the traffic signals:
[6], [9]. Although powerful, those models are
normally trained offline and do not form part of
live network control and they cannot be applied
directly to real live vehicular routing. Although
there are these developments, there is very little
empirical studies on effects of integrating SDN and
GNNs in an unified routing system framework in
VANETS. [12] was the first to present a theoretical
approach to the cooperation of GNN-SDN but was
not applied to realistic vehicular settings. Contr
astingly, [13] suggested a safe and configurable
SDN-based VANET routing architecture, however it
does not involve learning-based or graph-driven
inference data structures like the GNNs, thereby
lacking predictability in dynamic circumstances.
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Moreover, the prevailing ('explicit or implicit') GNN
models are not designed to be performed on a low-
latency basis, and they are typically impractical to
be used on resource-constrained RSUs or on edge
devices.

Gap Analysis

e The traditional routing protocols are myopic
and reactive and are not scalable, and they are
not in real time in their awareness of the
context.

e SDN is centrally controlled and the static or
rule-based routing feature does not learn and
predict.

e GNNs are effective in training on
spatiotemporal graphs, and are hardly used in
real-time control planes based on SDN.

e The opportunities of real-time feedback loops
and mobility-based graph inference in 6G-
VANET routing that can lead to the fully
potential implementation of the existing hybrid
techniques are not fully utilized.

The following paper fills these gaps because it

proposes a real-time GNN-aided SDN routing

framework to encode vehicular mobility in
dynamic graphs, and uses the trained models of

GNNSs to predict best routes. The synergy improves

the responsiveness, scalability, and performance in

high-mobility high-density VANET.

3. System Architecture

The suggested architecture of the system combines
the synergies of Software-Defined Networking
(SDN) and Graph Neural Networks (GNNs) to
provide end-to-end, on-demand routing to high-
mobility Vehicular Ad Hoc Networks (VANETS).
Where it is composed of three main blocks, which
include SDN control plane block, the GNN-based
block of the routing inference, and a mechanism of
real-time vehicular data flow. Cumulatively, these
elements  facilitate  international = network
impression, smart routing forecasts, and
programmability of circulation control to complete
communication proficiency in unstable automotive
circumstances. Figure 1 shows the entire system
functionality that combines vehicles, RSUs, SDN
control plane and the mode of routing that is based
on GNN.

3.1 SDN Control Plane

And the SDN controller is the brain of the network
forming decisions. The controller is deployed on
open-source implementations like Ryu or ONOS
and has a complete, in-real-time overview over the
vehicular network by regularly polling state data
over Roadside Units (RSUs) and mobile edge
agents. These are the following data points:

. Live vehicle locations (GPS locations),

. Travelling speed and direction,
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. Link-layer parameters signal level, packet
losses and delay.
Such a global view enables the controller to refine
the VANET topology and to build a uniform
representation of the global vehicular state. Unlike
the distributed routing techniques, the SDN
architecture has the ability to implement
centralized policies, Topology changes happen
smoothly, and routes can be managed pro-actively
with the help of the OpenFlow-controlled
forwarding engines.

3.2 GNN-Based Routing Inference Module

As part of the contextual aware routing, the SDN
controller contains a Gated Graph Neural Network
(GGNN) module trained on real-world mobility
data and synthetic mobility data. The vehicular
network is represented as the spatiotemporal
graph, in which:

A node model vehicle, RSU and the intersections,
Edges represent the communication paths with a
dynamic measure like bandwidth, delay, reliability
and signal-to-noise ratio (SNR).

The GGNN is based on the past knowledge on the
mobility traits and time-dependent behavior of a
path and forecasts the effective routing paths
among source-destination pairs. This model is
learned following a composite cost to be
minimized on the basis of:
L=a-Delay+B-HopCount+y-Link Failure Probability
where o3,y are tunable hyperparameters
optimized during training,

By inferring path scores in real-time, the GNN
module supports proactive route selection,
outperforming static or heuristic-based algorithms
in rapidly evolving VANET environments.

3.3 Real-Time Data Flow and Decision Pipeline
The component works in a sensing-computation-
actuation loop, so in Figure 1, the SDN controller
communicates with RSUs and the GNN module to
determine real-time adaptive routes. The flow of
data is in the following way:

1. Beacon Broadcasting: Periodically,
Cooperative Awareness Messages (CAMs)
with positional, velocity and directional
information are transmitted by vehicles.

2.  RSU Aggregation: The data in the beacon is
received and aggregated by nearby RSUs and
this information is relayed to the SDN
controller via a dedicated backhaul network

3. Graph Construction: The controller
dynamically builds a spatiotemporal graph
thereof called the current network snapshot
with topology as well as quality-of-service
metrics.

4. GNN Inference: Using the constructed graph
the GGNN calculates the optimal routing
decisions using learned models.
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5. Rule Deployment: Output is converted into
OpenFlow flow rules that are installed on the
SDN-enable switches or in RSU gateway
redirecting data packets accordingly.

The architecture provides real-time flexibility,
dense traffic scalability and fine-grained QoS
control, so it is quite suitable to the requirements
of forthcoming 6G-enabled vehicular
communications systems.
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Figure 1. SDN-GNN System Architecture

The architecture describes the interaction among
RSUs, SDN controllers and GNN-based routing
intelligence. Cars occasionally broadcast beacon
messages to RSUs that collect data and send
messages to SDN controller. Based on such
information the controller builds a spatiotemporal
graph and passes it to the GNN module to predict
the most optimal path to use. The August 2021
initiative. Resulting flow rules are backed down to
the data plane to lead vehicle communications in
real time.

4. METHODOLOGY

This section outlines the design, training, and
evaluation strategy of the proposed SDN-GNN-
based adaptive routing system for VANETSs.

4.1 Graph Construction

The vehicular network can be modeled as the
dynamic spatiotemporal graph Gn=(V,E), where
nodes V represent vehicles, RSUs and intersections,
and the edges E are the communication linkages
which are also weighted by the real behavioral
parameters, like latency and SNR, and link stability.
Periodical renewal of graph snapshots is based on
the telemetry gathered through RSUs and the SDN
controller.

4.2 GNN Training

A Gated Graph Neural Network (GGNN) is trained
on synthetic mobility data from SUMO and link-
layer statistics simulated via Mininet-WiFi. The
model minimizes a composite loss function:

L:a'Ldelay"'B'Lhops+Y'Lstability

with hyperparameters tuned empirically. Node and
edge features include speed, position, and real-
time QoS values. Training is performed using
TensorFlow with GPU acceleration and early
stopping to prevent overfitting.

4.3 Evaluation Metrics
System performance is evaluated under varied
traffic loads using:

e Packet Delivery Ratio

reliability (%).

e End-to-End Delay: Average communication

latency (ms).

e Throughput: Data rate (kbps).

e Route Stability: Frequency of path changes.
These metrics benchmark the SDN-GNN system
against AODV and DSR protocols in high-mobility
urban scenarios.

(PDR): Delivery

5. RESULTS AND DISCUSSION

The suggested SDN-GNN dynamic routing system is
contrasted to the reference protocols AODV and
DSR, under different examinations of traffic density
and mobility traits on actual urban-useful
networks, simulated through SUMI and Mininet
WiFi.

5.1 Performance Gains
Table 1 summarizes the comparative results for
core routing metrics:
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Table 1. Comparative Performance Metrics of Routing Protocols in VANETs

Metric AODV DSR SDN-GNN
(Proposed)

PDR (%) 78 81 93

Delay (ms) 230 205 127

Throughput (kbps) | 180 205 295

SDN-GNN approach leads to the addition of 15-
20% to the Packet Delivery Ratio (PDR) and a ~
45% improvement in end-to-end PDR over
traditional protocols. The increased throughput is
the consequence of more efficient use of
bandwidths, which was possible thanks to the
context-aware path choice in GNN and the whole-
network management as made possible by SDN.
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These outcomes are proof of usefulness of
integrating predictive routing intelligence and
centralized flow control mainly in high-density and
high mobility VANET environments. Figure 2, A bar
graph that depicts the grouping of PDR, Delay, and
Throughput of AODV, DSR and the proposed SDN-

GNN method.

DsSR SDN-GNN

Figure 2. Comparative Performance of Routing Protocols

Figure 2: Comparative bar chart illustrating PDR,
Delay, and Throughput across AODV, DSR, and the
proposed SDN-GNN framework

5.2 Scalability

The system is efficiently scalable to more than 200
vehicular nodes and the system controller
overhead is kept minimal. GNN inference enables
the SDN controller to calculate the routing paths a
priori; it limits the need to repeatedly recompute

these paths, and hence the load in control-plane
signaling is significantly low. This is unlike the
reactive protocols which trigger expensive route
advertisements under dynamic environment. Also,
the controller infrastructure can maintain a high
throughput and low response time because
OpenFlow rules updates are minimized by the
consistency of GNN-predicted paths in an
increasing number of vehicular nodes, like shown
in Figure 3.
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Figure 3. Packet Delivery Ratio vs. Node Count
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which compares how PDR varies with network size
for AODV, DSR, and the proposed SDN-GNN
approach. It clearly shows that SDN-GNN
maintains higher delivery efficiency as the network
scales.

5.3 Limitations

Along with the experienced performance

improvements, the major limitation could be

associated with GNN inference latency at peak re-

routing time. With the increase in the density of

vehicular graphs these inference delays may affect

time-sensitivity of decisions. This bottleneck may

be rectified by:

. suspenseful clouding in the RSUs with edge Al
accelerators,

. Pruning (model), or quantization of models to
achieve a lower computational complexity,

o Incremental re-training to prevent
reprocessing of the entire graph.

Also, deploying TinyML frameworks or lighter-

weight, quantized implementations of GNNs can

provide an attractive pathway to deploying

inference to resource-limited edge devices like

RSUs and embedded controllers.

The following are the proposed future directions

by these enhancements that allow real-time

inferences at scale.

6. CONCLUSION

The combination of Graph Neural Networks
(GNNs) and Software-Defined Networking (SDN)
would provide a dynamic and scalable proposal of
intelligent routing depending on the dynamic
features of Vehicle Ad Hoc Networks (VANETSs). The
proposed framework provides proactive and
context-sensitive route optimization based on the
structural and temporal characteristics of
vehicular communication graph enabling fast
response to high rates of the topology change and
to mobility-caused disruptions. Combining GNN-
based predictive inference with centralized SDN
model, it is possible to guarantee better delivery of
certain packets, decrease latency, and improve
throughput, even achieving it in dense urban traffic
scenarios. Those features render the architecture
very well-suited in the implementation of
emerging use cases in 6G-enabled intelligent
transportation systems (ITS), where real-time
decision-making, communication reliability and
road safety are key operation needs. In addition to
it, the lightweight and modular nature of the
framework makes it suitable to be integrated into
edge-enabled 6G V2X platforms to provide the
capabilities of decentralized inference and cross-
layer flexibility in infrastructures of the future
mobility.

7. Future Work
Although the SDN-GNN framework that
implements the proposed design shows promising
results regarding routing efficiency and scalability,
there are a few extensions that can enhance the
framework in increasing its applicability in
practice concerning the vehicular networks:

¢ GNN Inference Modules Deployed to Edge: To
overcome the inference latency as well as
bottlenecks in centralized processing, future
deployments can investigate deploying
lightweight GNN models to the edge, especially
on RSUs or MEC (Multi-access Edge Computing)
nodes. This method allows low communication
overhead real-time inference and distributed
intelligence in VANETS.

e Multi-Hop V2X Communication Support: The
existing architecture is designed to enhance the
single-hop paths mainly. Future extensions will
also adopt multi-hop V2V and V2I relaying to
improve both network coverage and network
resiliency in sparse urban or rural deployments
where direct connection with RSU may be
discontinuous.

e Trust and Security Mechanisms Composition:
Since VANETs are susceptible to spoofing,
misrouting, and data tampering, it is necessary
to integrate the trust-knowing routing policies
and famine cryptographic protocols within the
SDN-GNN framework. This incorporates using
reputation scores, blockchain-optimized path
verification or zero-trust architectures to be
able to have the safe and reliable propagation of
information amid adversaries on the wide area
network.

Such directions are meant to bring the framework

a step closer to the needs of next-generation

intelligent vehicular forms of communication

about performance, security, and decentralization.
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