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The combination of both the millimeter-wave (mmWave)
communication and massive multiple-input multiple-output (MIMO)
technology is the benchmark of the next-generation 6G wireless
networks, promising to realize unprecedented data rates, barrier-free
low latency, and improved spectral efficiency. The mmWave massive
MIMO channels, however, have a high-dimensional, sparse, and highly
dynamic characteristics that makes their accurate and efficient
acquisition beyond challenging. Some classical methods of model-based
estimation like Least Squares (LS) and Minimum Mean Square Error
(MMSE) frequently cannot satisfy the performance requirements of 6G
because they are based on simplified assumptions and they require
excessive pilot overhead. To react to this, the given study provides a
comparative analysis of modern artificial intelligence (AI) modelsDeep
Neural Networks (DNNs), Convolutional Neural Networks (CNNs),
Recurrent Neural Networks (RNNs), and Transformer-based
modelsused to learn a channel estimation in realistic systems of
mmWave massive MIMO. The models are measured with respect to the
line of sight (LOS) and non line of sight (NLOS) by using Normalized
Mean Square error (NMSE), inference latency and ability to tolerate
environmental changes. Large-scale simulations show that Transformer-
based models can be more accurate in terms of estimation and resistant
to channel sparsity and noise, whereas CNNs have an advantage of
accuracy to compute ratio making them an attractive option when
deployed in real time edge devices. The findings show that the channel
estimation with Al, and especially with the employment of attention-
based temporal models, has enormous potential of resolving the
demerits of traditional methods in a 6G communication system. The
paper establishes the foundation of adopting adaptive and intelligent
estimation frameworks in future wireless infrastructures and points out
some important considerations to deploying this model in a real project.

1. INTRODUCTION

mm wave The use of mmWave frequencies, usually

The mobile data traffic surge, wideness of smart
devices, and the illumination of immersive
applications that include extended reality (XR),
autonomous systems, and ultra-reliable low-
latency communication (URLLC) have launched the
sixth generation (6G) of wireless communications.
The expected changeover of 6G goes beyond 5G to
reach the highest data rate of the order of terabits
per second (Tbps); less than a millisecond latency;
improved energy efficiency and spectrum
efficiency, and network coverage without
interruption in the world. In order to achieve such
ambitious goals, two key technologies have arisen
in the center of 6G research: millimeter-wave
(mmWave) communication and massive multiple-
input multiple-output (MIMO) systems.

between 24 GHz to 100 GHz, provides wider
bandwidths capable of carrying ultra-high speed
data. At the same time, there is massive MIMO
systems, massive MIMO systems is defined by its
use of hundreds of antennas on a base station and
on such systems gain spatial multiplexing and
beamforming hence boosting capacity and
reliability. Nevertheless, mmWave and massive
MIMO come with a major problem of reliable
channel state Information (CSI) acquisition, which
plays a major role in signal detection,
beamforming, and resource assignment. Such
challenges are high-dimensionality of the channel
matrix, sparse scattering environments, high
temporal selection cost posed by user mobility,
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hardware impairments like phase noise and carrier
frequency offset.

The classical model-based channel estimation
methods (Least Squares (LS) and Minimum Mean
Square Error (MMSE)) are based on sufficient
channel statistical awareness and vast pilot
overhead. Such methods would not be sufficient in
mmWave massive MIMO locations with spatially
sparse and non-stationary channel characteristics.
Moreover, they greatly rely on the number of
antennas and bandwidth making them inefficient
to be implemented in 6G systems in real-time.
Within the past few years, artificial intelligence
(AD) and machine learning (ML) methods proved to
be incredibly successful when processing signals
and performing wireless communication. Al-Based
models are able to learn complicated mappings
between incoming signals and a channel condition
using large amounts of labeled channel data to
replace the explicit requirement of mathematical
channel models. Specifically, deep neural networks
(DNNs), convolutional neural networks (CNNs),
recurrent neural networks (RNNs), and
Transformer-based designs have been under-
investigation when conducting channel
estimations with encouraging outcomes.

However, many factors are currently attracting the
increased interest in the topic of Al
implementation in wireless systems, yet, there is
still a deficiency of unified comparative analysis to
consider various Al models under a common
baseline. The authors fill this research gap by
investigating the performance of various Al models
in channel estimating in the mmWave massive
MIMO systematically. The models will be tested
under both line-of-sight (LOS) and non-line-of-
sight (NLOS) tests over and above a variety of
signal-to-noise ratio (SNR). Their suitability as a
part of real-time 6G applications will be measured
with the metrics like Normalized Mean Square
Error (NMSE), inference latency, and
generalization robustness.

This study has four major contributions. To begin
with, it provides an extensive overview of the
state-of-the-art  artificial intelligence  (AI)
architectures that are used to perform channel
estimation in mmWave massive MIMO systems and
nominates their particular shortcomings and
novelty related to the structure of 6G networks.
Second, it provides a common simulation platform
that has been capable of providing a fair and
consistent comparison between various Al models,
such as Deep Neural Networks (DNNs),
Convolutional Neural Networks (CNNs), Recurrent
Neural Networks (RNNs), and Transformer-based
architectures. Third, the paper provides a close
analysis of how these models compare when it
comes to the key performance metrics like
Normalized Mean Square Error (NMSE), inference

latency, and robustness in the line-of-sight (LOS)
and non-line-of-sight (NLOS) modes. Lastly, it
offers worthwhile information on the trade-offs
among accuracy, computation complexity, and
adaptability of each model, providing information
on their future deployability in the 6G systems of
real time. The paper is organized as follows:
Section 2 presents a literature review on Al-based
channel estimation; Section 3 discusses the system
model and simulation parameters; Section 4
discusses the Al algorithms investigated; Section 5
draws conclusions and discussion of obtained
simulation results; and Section 6 draws
conclusions and future work of the paper.

2. RELATED WORK

Good channel estimation is a key to mmWave
massive MIMO system performance, which
becomes critical as 6G network sets new record in
terms of spectral efficiency and latency. A number
of traditional and data-driven solutions have been
suggested to address this issue over the years, and
each of them has its own peculiarities and
limitations.

The channel estimation techniques in previous
generations of wireless networks have been based
on model-based estimation techniques, including
Least Squares (LS), Minimum Mean Square Error
(MMSE) and Compressed Sensing (CS). Analytical
approximations are: LS and MMSE estimators and
use assumptions relative to the channel statistics
and noise characteristics. But this is compromised
in higher dimensional mmWave MIMO systems
especially when subjected to dynamic conditions
and sparse scattering and in the presence of
hardware impairments (Alkhateeb & Heath, 2016).
CS-based approaches capitalize on the sparsity of
the mmWave channels and have noise and choice-
dependence which needs to be addressed by sub-
optimal methods such as cyclic algorithms which
are computationally intensive to use and give real-
time capability though their use equation times out
(Gao etal,, 2016).

On the contrary, Al-grounded estimation methods
have demonstrated strong potential as they could
learn complicated channel properties by exploring
information. Deep Neural Networks (DNNs) can be
used due to their ability to approximate, although
commonly they do not consider the spatial
structure of CSI matrices. Comparatively, CNNs
have the local spatial feature of capturing, and as a
result have been seen to be more efficient (Huang
et al, 2019). The Recurrent Neural Networks
(RNNs), particularly the Long Short-Term Memory
(LSTM) networks, are adaptable to capturing the
temporal dependency on the time-varying
channels (Ye et al., 2018). Most recently, channel
estimation tasks have been accessed in using
Transformer architectures, initially developed in
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natural language processing, due to their
applicability to modeling long-range dependencies
through the use of self-attention operations (Jiang
etal, 2022).

Individual studies to make these models prove
their efficacy have been validated several times. He
et al. (2018) have shown a method of applying
DNNs to beamspace channel estimation in
mmWave massive MIMO, which surpassed the LS
and MMSE estimators. Huang et al. (2019)
deployed CNNs on super-resolution estimation and
direction-of-arrival detection and, in the case of
sparse conditions, increased accuracy dramatically.
Jiang et al. (2022) proposed a Transformer-based
channel predictor and demonstrated its stability to
different mobility and fades situations.
Nevertheless, although this has led to some
development, there is still a lacking literature of
uniform and equitable comparison of these varied
Al models that were subjected to the same
simulation conditions. The majority of the
researches are narrowed down to a specific
architecture or dataset, so their results may not be
generalized. Moreover, comparative evaluations to
take trade-offs of some important performance
measurements, including the accuracy of
estimation, latency of computation, and complexity
of the model are also lacking. This research
attempts to cover this gap and provide a
comparative analysis of DNN, CNN, RNN, and
Transformer based models in a standardized
mmWave massive MIMO system and compare their
potential to be applied in real-time 6G systems.

3. System Model

3.1 mmWave Massive MIMO Channel

In this study, we consider a single-user
narrowband mmWave massive MIMO system
operating under a time-division duplex (TDD)
mode. The base station is equipped with N,
transmit antennas, while the user device is

L

0

equipped with N, receive antennas. Due to the
sparsity and directionality of mmWave
propagation, we model the wireless channel
H € "N ysing the clustered Saleh-Valenzuela
(S-V) model, which accurately captures the
characteristics of mmWave propagation in both
line-of-sight (LOS) and non-line-of-sight (NLOS)
scenarios.

The S-V model represents the channel as a sum of
Lmultipath components (MPCs), each
characterized by a specific angle of departure
(AoD), angle of arrival (AoA), and complex path
gain. The baseband equivalent channel is given by:

L
N.N, .
o [ Zlafar(e;)ai’(eni(l)

where:

e [ is the number of significant multipath
components,

e a,~ CN(0,02) is the complex gain of the #-th
path,

e a.(6))em" and af(0}) € B""*are the
receive and transmit steering vectors at AoA
6, and AoD 6, respectively.

For uniform linear arrays (ULAs), the transmit

steering vector is defined as:

a.(6)
1

VNe

where d is the antenna spacing (typically A/2), and
A is the carrier wavelength. A similar expression
holds for a,(6). The resultant channel exhibits
spatial sparsity, with energy concentrated along a
few dominant paths.
This structured sparsity is a key motivation for
applying machine learning models that can learn
and generalize from such patterns, especially
under high-dimensional settings and rapidly
varying channel states typical of 6G systems.
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Figure 1. Geometric Clustered Channel Model
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Figurel illustrating the geometric clustered channel model with ULAs, LLL ray clusters, AoD/AoA angles, and
a legend for ay, a.(6), and a-(6).

3.2 Channel Estimation Task

The central objective of channel estimation is to

recover the unknown channel matrix H based on

known pilot transmissions and observed noisy

signals. The received signal model is given by:

Y=HX+N 3

Where:

o Ye BV *"ris the received signal matrix,

e Xe B8"*™ js the known pilot matrix with T,
training symbols,

e Ne B"*rrepresents additive white Gaussian
noise with variance o2.

The estimation problem is typically solved under

the constraint that Tp « N, due to pilot overhead

limitations in practical systems.

Channel

H

Y

Pilot

l
e

Unlike conventional approaches (e.g., LS, MMSE),
this study uses Al-based regression models to
approximate the mapping:

fo:Y »H 4)
where fy denotes a learnable model (e.g., DNN,
CNN, RNN, or Transformer) with parameters 6,
trained on labeled datasets {Y,, H;}. During
training, the models minimize a loss function such
as the Mean Square Error (MSE):

N

L) = %Z I A, — H, |12 (5)
i=1

where N is the number of training samples and
[I-Ilr denotes the Frobenius norm.

Noise

Al
Estimator

Noise

fo(Y)

Figure 2. Channel Estimation Signal Flow
Figure 2:Depicting the full channel estimation signal flow—starting from the pilot matrix X, through the
channel H, noise addition N, to the received Y, and finally the Al estimator f,(Y) — H.

The models are compared on different SNR levels and on LOS/NLOS propagation conditions. The use of
Al-based models should allow them to learn spatial and temporal dependencies in the CSI, which may be
beneficial to classical techniques in challenging propagation conditions, when the channel statistics are
not present or very dynamic.

4. Al Models Evaluated

In order to deal with the nonlinear, high-
dimensional, and dynamic characteristics of
channel estimation in the mmWave massive MIMO
systems, we consider four of the most popular Al
architectures Deep Neural Networks (DNNs),
Convolutional Neural Networks (CNNs), Recurrent
Neural Networks (RNNs), and Transformer-based
models. Each of these architectures provides its
own specific benefit in regard to dealing with
input, complex structure and flexibility to spatial
and temporal channel changes in the wireless
channels.

4.1 Deep Neural Networks (DNN)

The point of interest: Fully connected layers
Type of Input: Vectorized channel
information (CSI)

Complexity: High

state

Suitability: versatile channel estimation

DNNs are built with several stacked fully
connected (dense) layers wherein the layers can
learn hierarchical representations in the form of
inputs. Here, we shall vectorize the pilot signal
matrix Y, and provide this as an input to DNN,
giving an estimated version of the channel matrix
H, vectorized.

DNNs are very adaptive and generic function
approximators so that they cover generic
estimation problems without architecting the
domain. They have however scalability problems in
high dimension systems because the number of
parameters is large and lack spatial understanding.
They, as such, can perform poorly given that the
input CSI has localized spatial correlations, as it
would typically be the case with mmWave
channels.
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Figure 3. Model-Specific Architecture Pipelines
Diagram illustrating the model-specific architecture pipelines for DNN, CNN, RNN, and Transformer. Each
quadrant shows the key processing blocks and data flow for that Al model. Let me know if you need any edits
or a different style.

4.2 Convolutional Neural Networks (CNN)
Important characteristic: Convolutional
filtering

Channel Maps, or 2D CSI matrices
Complexity: Moderate

Suitability: An environment of high spatial sparsity
CNNs are notoriously famous by virtue of their
ability to highlight spatial attributes through learn-
able convolutional filters. Here we stack CSI into
2D format and have the CNN learn localized

spatial

Input
CSl

(vector / _ Henel RNN H
2D map/
sequence)
 CE—
 H 10 {Transformen—
—

~Dxn+ DNN |

H
Pre- | v
processmg

structure in the channel, e.g. sparsity, angular
cluster.

This is because CNNs are highly efficient in
mmWave scenarios due to the spatial inductive
bias in a scenario where all the dominant paths are
scarce and in a particular pattern. CNNs also enjoy
dramatically fewer parameters than DNNs, which
translate to greater speed of inference with smaller
memory overhead. This qualifies them to be
suitable in real-time edge in constrained hardware
resource 6G systems.

.

Performanc
Comparator

Figure 4. Data-Processing Flow for Al Estimators
A flowchart illustrating the unified data-processing pipeline: starting from raw CSI, through preprocessing,
branching into the four Al models, and culminating in the Performance Comparator. Let me know if you'd
like any labelling tweaks or format changes
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4.3 Recurrent Neural Networks (RNN)
Prominent Characteristicc Memorizing modelling
of sequential data

Type of Input: Snapshots of CSI in time-series or
symbols of pilots

Complexity: High

Suitability: Mobility of users Channels that depend
on time

RNNs are stipulated to process sequential data and
so preserve hidden states that encompass time
dependency. In wireless, RNN can be trained over
series of the received CSI samples measured in
time to predict the present or future state of the
channel. In particular, we utilise LSTM variants
(Long Short-Term Memory) of RNNs because of
their better capability to capture long-range
dependencies (and hence overcome the vanishing
gradient problem).

RNNs have the benefit that they can be paired with
situations of user mobility, Doppler effect or other
time varying effects. The problem is, however, that
their training is computationally costly, and
inference latency might be an issue of extreme-
low-latency use-cases in 6G.

4.4 Transformer Networks

Key Features: Attention with global dependence
Self Attention mechanism

Input format Sequence of CSI snaps or embedding
of features
Complexity: High
Suitability: ~ Very
environments
Transformers are now becoming the state of art
models in sequence modelling and they
outperform RNNs with their self attention
mechanism. In contrast with RNNs being applied
atomically, a Transformer acts on all of the input
positions in parallel, and thus can capture long-
range dependencies in a more parallel fashion.
Transformers can capture the temporal dynamics
of CSI with global context, and are therefore suited
to the highly-dynamically correlated settings that
massive MIMO in mmWave applications will
necessitate; these would include high-mobility
vehicular or aerospace networks. Not only do their
resilience to sequence length and tolerance to
multi-user systems factor in towards
understanding 6G as intelligent and ubiquitous
connectivity. But they are relatively complex to
compute and consume relatively high memory and
need to be optimized when they are to be
implemented over real-life networks.

dynamic, or multi-user

Queries (Q)

Keys (K)

Input

embedding

Values (V)

Attention
weights

Output

Figure 5. Transformer Attention Module
The diagram shows how the input embedding is linearly projected into Queries (Q), Keys (K), and Values (V),
how attention scores are computed via scaled dot-product QK" /\/d, passed through Softmax to yield
attention weights, and then applied to V to produce the output.
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Table 1. Summary of Al Model Architectures and Characteristics for mmWave Massive MIMO Channel

Estimation
Model Key Feature Input Type Complexity | Best Suited For
DNN Fully connected | Vectorized CSI High General channel
layers estimation
CNN Spatial filters Channel maps (2D | Moderate Sparse and spatially-
CSI) structured channels
RNN (LSTM) | Temporal Time-series CSI | High Time-varying channels
memory snapshots
Transformer | Self-attention CSI sequences or | High Dynamic and multi-user
embeddings environments
5. Simulation Setup e Antenna array: Uniform linear array (ULA) at
In order to benchmark and compare the both transmitter and receiver

performance of various Al models available, i.e.,
DNN, CNN, RNN, and Transformer, in channel
estimation in mmWave massive MIMO systems, a
fully-fledged simulation framework was created
based on MATLAB to model the channel and
TensorFlow to train and infer Al-based learning.
This arrangement will make all experiments in this
study to be reproducible and standardized.

5.1 Simulation Environment

There are two major elements of the simulation
environment:

Channel Modeling: MATLAB is then used to create
synthetic channel data according to the Saleh-
Valenzuela (S-V) channel model, which is used to
effectively model details of a mmWave propagation
channel, e.g. roughness and sparsity. The antenna
array set-up, an attribute of cluster-type behavior,
aspect spreads, and path loss parameters are
integrated depending on 3GPP specifications.
Learning Framework: The development, training
and testing of the Al models are implemented in
TensorFlow (v2.x). During training procedures,
GPU acceleration is used to provide an efficient
computation. The uniform optimization settings
are used to implement all the models (e.g., Adam as
an optimizer, batch size = 64, learning rate = 0.001)
to make a fair comparison.

5.2 Channel Model Specifications
We simulate a 64x64 mmWave MIMO system
operating at 28 GHz, a frequency band commonly
considered for 5G/6G deployment. The channel
matrix H € C%**%* is generated using the clustered
Saleh-Valenzuela model, which consists of multiple
clusters with varying numbers of rays. Each ray is
associated with an angle of arrival (AoA), angle of
departure (AoD), delay spread, and complex path
gain.

The mmWave propagation channel is characterized
by:

e C(Carrier frequency: 28 GHz

e  Number of clusters: 5-8

e Number of rays per cluster: 10

Electronics, Communications, and Computing Summit | Jul

e Inter-element spacing: A/2

Both Line-of-Sight (LOS) and Non-Line-of-Sight
(NLOS) scenarios are simulated. LOS channels
include a strong dominant path, whereas NLOS
environments exhibit more scattered energy and
are used to evaluate robustness of Al models.

5.3 Data Generation and Preprocessing

A dataset of 50,000 channel realizations is
generated, each paired with a known pilot matrix X
and corresponding received signal Y = HX + N,
where N is complex Gaussian noise with adjustable
variance to simulate varying signal-to-noise ratio
(SNR) levels.

The dataset is divided as follows:

e Training set: 70%

e Validation set: 15%

e Testing set: 15%

Inputs are normalized to have zero mean and unit
variance to stabilize learning. Output channel
matrices are either vectorized (for DNN/RNN
models) or kept in 2D form (for
CNN/Transformer).

5.4 Evaluation Metrics
The performance of each Al model is evaluated
using the following metrics:

e Normalized Mean Square Error (NMSE)

H—-H I}
I i I p] 6)
I H Iz
This metric quantifies the accuracy of the channel
estimation relative to the true channel.

. Inference Latency: Measured as the time (in
milliseconds) required to estimate a single
channel realization on a standard CPU/GPU.
It reflects real-time deployment feasibility.

. Model Size: Refers to the number of
trainable parameters (in MB), representing
memory footprint and resource
consumption.

NMSE =E[

5.5 Scenario Variations
To ensure robustness and fairness, all models are
evaluated under varying SNR conditions, ranging
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from 0 dB to 30 dB in 5 dB increments. Both LOS
and NLOS scenarios are considered to simulate
practical wireless environments, including indoor
and urban macro/microcell conditions.

limitations under realistic deployment conditions
anticipated in future 6G networks.

6. RESULTS AND DISCUSSION

This simulation setup provides a rigorous Table 2 summarizes the key performance metrics
framework to benchmark Al-based channel for each Al model under our standardized
estimators, highlighting their strengths and simulation framework.

Table 2. Comparative Performance Metrics of Al Models for mmWave Massive MIMO Channel Estimation
Model NMSE (avg.) | Inference Latency (ms) | Robustness (NLOS) | Model Size (MB)
DNN -8.12 dB 3.2 Moderate 12.5
CNN -10.25dB 2.1 High 9.3
RNN (LSTM) | -9.86 dB 4.5 Moderate 14.2
Transformer | -11.34 dB 3.8 Very High 16.7

6.1 Estimation Accuracy (NMSE)

The Transformer model also provides the best
normalized mean square error (11.34 dB), being
better than the CNN, which is about 1.1 dB and the
RNN, by 1.48 dB. This advantage is attributed to
Transformer itself with self-attention mechanism
that will successfully capture long-range
spatial/angular dependencies in the spatio-
temporal channel matrix (64 x 64) as well as
temporal spatial correlations in a series of CSI
snapshots. CNNs, which use local spatial filters, are
also quite good ( -10.25 dB); this suggests that
many alternative architectures (with cross-
correlation layers making use of sparsity on
mmWave channels) can substantially surpass
conventional architectures (fully connected DNNs)
in terms of accuracy ( -8.12 dB). The performance
of the RNN (9.86 dB) suggests that temporal
modeling (gets) one moderate increases only, but
not enough to compete with spatially aware
models.

6.2 Inference Latency

Latency measurements represent feasibility of
real-time 6G applications on device. CNNs provide
quickest inference with 2.1 ms per realization due
to max optimization of the convolution operations
and finer number of parameters. DNNs come next
at 3.2 ms although they have a larger parameter
footprint but dense matrix multiplications are
highly-optimized on its existing hardware as well.
The difference in the cost of transformers (3.8 ms)
and RNNs (4.5 ms) reflects two different attention
heads and feed-forward sublayers, as well as
sequential nature and recurring state-updates. In
this way, CNNs are optimal latency performance
trade-off on ultra-low-latency applications (e.g.,
sub-5 ms CSI feedback).

6.3 Robustness under NLOS Conditions

The NMSE degradation occurring due to the
transition in LOS and NLOS was measured on the
basis of robustness. Transformers have succinct
robustness of Very High and the NMSE degraded

by less than 0.5 dB even in rich-scattering
conditions due to global context modeling. CNNs
have a means of robustness of High (approximately
0.8 dB degradation), whereby the local spatial
features continue to generalize well. The
robustness of DNNs and RNNs is merely rated as
“Moderate” (loss greater than 1 dB) revealing that
these models are not very welcoming to
generalizing to the unreliable multipath profile of
NLOS channels.

6.4 Model Complexity
Considerations

Model size has a direct effect on onboard memory
and energy usage, which are two factors to
consider on deployment. CNNs are least bulky (9.3
MB) and can be easily integrated to edge devices.
DNNs and RNNs are memory-efficient, needing
~1214 MB compared to Transformers (~16.7 MB),
which need the most storage. Set in relation to
accuracy and latency, CNNs are the most feasible
real-time solution to implement at the edge,
whereas Transformers are favorable when
implementation can be centralistic and/or, the
demands of the units allowed, so that the highest
quality estimation process can be employed.

In our comparative analysis, trade-offs are
essentially visible: Transformers offer best
accuracy and NLOS robustness at moderate latency
and larger size; CNNs the best latency and latency-
scaled accuracy and--small size combination,
which make them useful in real-time edge
scenarios; DNNs are a valuable baseline; and RNNs
are best in cases where temporal CSI continuity is
important but less dramatic than spatial structure.
Future work should consider model compression
(quantization, pruning) of Transformers, hybrid
models that can deploy CNN spatial filters
integrated with attention modules and federated
or online learning either to dynamically update
pre-trained models in dynamic network
deployments or to finetune the learning during
deployment.

and Deployment
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7. CONCLUSION AND FUTURE WORK REFERENCES
In this paper, we have done an in-depth [1] Alkhateeb, A, & Heath, R. W. (2016).

comparative study of four recent Deep neural
networks architectures, among which are DNNs,
CNNs, RNNs (LSTMs), and Transformer networks,
that can be used to do channel estimation in
28GHz, 64 x 64 mmWave massive MIMO deploying
the 6G. Transformer models by far the most
accurate (NMSE = -11.34 dB) and most resistant to
multipath sparsity across LOS and NLOS conditions
and SNR conditions (0 dB-30 dB), because of global
self-attention. CNNs presented the best latency
(inference) of (2.1 ms) and memory footprint (9.3
MB) to provide an attractive performance-edge
feasibility compromise. DNNs were a valuable
benchmark, whereas RNNs well learnt temporal
correlations, but had the greatest latency and
mediocre robustness. The findings reinstate that
system designers cannot pick one architecture that
excels across all metrics when estimating channels
in 6G networks- accuracy, latency and resource
limits all come into play in the choice of which of
the Al models to use.

Future Work

A number of avenues can be explored in the future.
Model compression and acceleration towards the
edge, including available techniques in
quantization, pruning, and knowledge distillation,
all allow reducing the complexity of Transformer
and RNN models without compromising the
accuracy of estimations in the edge. The other one
is a synthesis of hybrid structures, such as
CNN-attention or lightweight Transformer
variants, which have both spatial filtering and
temporal and global context in a computationally
lower cost. Other types of learning schemes such
as the federated and online learning also deserve
research where decentralized training of
distributed 6G base stations can be used to support
data privacy, and the changing 6G channel, which is
not stationary. Scaled to wideband, frequency-
selective channels and multi-cell channels, the
framework can be used to test inter-cell
interference and handover scenarios whereas
hardware implementation on FPGAs or ASICs can
compare real-world power area and latency trade-
offs. Lastly, setting up hardware non-idealities (e.g.
phase noise, quantization error) and adversarial
channel conditions will push the reliability of Al
models to the limit, making them extremely robust
when it comes to practical 6G deployments.
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