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The complexity of the current VLSI (Very Large-Scale Integration)
systems is increasing because of the number of the transistor, tighter
design rules, and faster, power-efficient chips. The functionality of
traditional Electronic Design Automation (EDA) tools has been
inadequate at supporting the challenges that lie ahead that come with
decreasing technology nodes like 7nm and 5nm and the requirements to
meet several design constraints. The work will introduce and verify an
intelligent design automation system with an Al-enhanced intelligent
design, which uses state-of-the-art machine learning algorithms to
support intelligent design efficiency, layout quality enhancement and
power-performance optimization. The framework consists of Deep
Reinforcement Learning (DRL), Graph Neural Networks (GNNs), and
Transfer Learning at the various levels of the VLSI design flow such as
logic synthesis, floorplanning, placement, routing, and timing analysis.
The assessments were performed based on industry-related benchmark
circuits (simulated using open-road and tensor flow containing
modules). Some of the key performance indicators were design time;
power-delay product (PDP); wirelength and thermal violation rate. As
proved experimentally, the proposed framework leads to an
improvement of the overall design time by an amount of up to 27% and
PDP enhancement by a margin of around 19 %, in comparison to the
traditional EDA methods. Improved performance was also noted in
problems with congestion management, wirelength and thermal
constraint at both the 7nm and 5nm nodes. Such findings serve to testify
to the viability of Al-powered approaches in the redefinition of EDA
frameworks and position the designed framework as a viable means of
addressing next-gen electronics, including edge Al hardware and more
elaborate SoCs.

1. INTRODUCTION

synthesis, floor planning, placement, routing and

Moore cognizance, which is the fuel that motivated
the dependency of transistor density, has reshaped
the paradigm behind circuit design and
development of Very Large-Scale Integrations
(VLSI), due to exponential growth. But with the
increasing technology node sizes to sub 10nm
technologies like 7nm and 5nm, semiconductor
fabricators of chips are finding it extremely hard to
sustain their performance, power rates, and design
continuity. The above challenges are due to higher
design complexity, signal integrity, thermal and
higher  sensitivity to  process variations.
Consequently, the Electronic Design Automation
(EDA) ecosystem that has long been using static
rule-based heuristics and deterministic algorithms
are under pressure to change and adjust to the
needs of the next-generation electronics.

Ideal EDA systems go through a sequential and
straight path design flow which includes logic

timing closure. Although these tools have been
good to the industry, their scalability and flexibility
are getting reduced. With the reduction in design
cycle and the growing pressure on first-time-right
silicon, adopting intelligent, adaptive / are in a
more data-driven and dynamic way is more and
more urgent with a view of automating and
optimizing the VLSI design process.

Artificial Intelligence (AI), being an effective
technology in the field of pattern recognition,
optimization, and decision-making, has turned out
to be a potent driver of EDA innovation. Graph
Neural Networks (GNNs), Deep Learning (DL), and
Reinforcement Learning (RL) are especially
suitable techniques with which to tackle the
combinatorial complexity of VLSI design problems,
and in particular their graph-based nature. The
success of initial scholarly work, and industry,
including Google RI-based floorplanning and GNN-
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enabled timing prediction, demonstrates that Al
may contribute greatly to the efficiency, quality,
and productivity of designs.

In spite of this progress, EDA use cases of Al are
still disparate and most of the proposed solutions
deal only with individual steps in the design
process. There is also a lack of a unified and
scalable framework of Al empowered design
automation integrating several different Al
paradigms over the whole VLSI workflow. In
addition, few lists have been focused on how these
Al-based systems might work with an advanced
tech node and realistic design limits.

This research paper presents the solution to the
aforementioned limitations in the form of an
intelligent design automation framework that is
capable of automating and optimizing key stages of
the VLSI design process using Deep Reinforcement
Learning, Graph Neural Networks, and Transfer
Learning. The benchmark study evaluates the
framework in standard benchmark circuits of 7nm
and 5nm nodes by using industry appropriate
measures like design time, power-delay product
(PDP), wirelength, and violations of thermal
constraints. It will show how Al methods can be
used to minimize the effort required in developing
design as well as how Al methods can be used to
improve chip performance, and in the ability to
more effectively scale and efficiently develop VLSI
in electronic devices of the future.

The study also relates to the growing field of Al-
EDA fusion in designing a comprehensive and
decomposable automation system, establishing the
groundwork of intelligent design environments
that will enable faster products development in
high-performance computing, edge Al devices, and
Internet-of-Things (IoT) frameworks.

2. LITERATURE REVIEW

2.1 Traditional Design Automation

Conventional VLSI design flow consist of a few
distinct steps, such as logic synthesis,
floorplanning, placement, routing and verification.
These procedures find their organization with the
help of Electronic Design Automation (EDA) tools
that convert the high-level descriptions of a
hardware to the optimized physical layouts which
can be fabricated. In logic synthesis, a high-level
description (e.g. RTL) is translated into a gate-level
representation and is optimized according to
constraints, including delay, area and power.
Floorplanning and placement is all about spatial
layout of standard cells and functional blocks in the
chip design and the objective is to minimize the
length of interconnects, timing problems. These
components are interconnected using netlists to
route them, whereas timing closure is addressed
using static timing analysis (STA) as well as the

functional verification to identify any logical
errors.

In spite of being mature, robust and heuristics-
based, these traditional tools rely on rule-based
heuristics and fixed cost functions, which pose a
limitation on their scalability given escalating
design complexity. The design space in sub-10nm
nodes (especially) is very cursed as it is high-
dimensional and heavily constrained, driven by the
parameter sets such as lithographic resistance- and
variation-, process variability, and increasing
power-performance-area ( PPA) requirements. The
static approaches are bad at flitting through this
space efficiently and therefore may produce sub-
optimal solutions and longer design loops.
Moreover, they do not have the ability to be
learned based on earlier designs or change to meet
the new limitations as they run.

2.2 Al in Electronic Design Automation

Recently, Artificial Intelligence (Al), specifically,
machine learning (ML) and deep learning (DL) has
been considered as a potent method of overcoming
the weaknesses of conventional EDA tools. A
number of prominent works show how Al can be
utilized at different phases of VLSI design. Chip
floorplanning is already successfully solved by
Deep Reinforcement Learning (DRL). Mirhoseini et
al. (2021) performed a landmark study and
showed that in hours, DRL agents could learn to
produce floorplans that are superior to those
produced by human engineers in wirelength and
congestion. Their approach turned out to be
commercially successful and established the move
in the direction of Al-driven design in commerce.
The Graph Neural Networks (GNNs) have been
demonstrated to be potential in representing the
spatial and connectivity data that is characteristic
to circuit layouts. Yu et al. (2022) used GNNs to
predict timing and congestion, which exceeded the
performance of the traditional analytical models,
and allowed making more realistic design choices
in the earlier stages. GNNs are better at capturing
the topology of design graphs, as it enables them to
capture interconnect relationships and physical
proximity in a more natural way than when using
standard approaches.

Also in the field of analog design, where there is
limited data availability and a design is sensitive to
the data, meta-learning and transfer learning
techniques have been presented. Chen et al. (2022)
employ meta-learning to train a generator of
analog layout to adapt to new circuit topologies
with little retraining to speed up layout generation.
Such flexibility renders the Al particularly
appealing  to analog/mixed-signal (AMS)
applications where designing is time-consuming
and expertise-limited. In totality, this shows that Al
has the potential of improving performance,
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driving turnaround time, and pushing power-
performance-area (PPA) metrics. They can be
however limited in scope when compared with a
true end to end integrated Al-based design flow by
being focused on individual stages (i.e.
floorplanning or routing).

2.3 Research Gaps

Although the application of Al to EDA is gaining a
considerable pace, there are some critical
problems that impede the extensive introduction
and commercial implementation. Currently
available Al solutions are isolated where they only
support a subset of the VLSI design lifecycle.
Higher level frameworks which combine Al
techniques in a harmonious way are lacking in
synthesis, floorplan, placement, routing and
verification. Such discontinuity has the potential of
yielding suboptimal cross stage interactions and
constrains the potential of Al to exploit the design
process in an integrated fashion. Furthermore, the
existing Al solutions are frequently not capable of
adapting themselves dynamically to the changing
constraints (thermal hotspots, IR-drop, sudden
change in design rules), in otherwise iterative
processes. This flexibility becomes critical in on the
ground situations which require multi-physics
interactions, variability of processes and capability
of making intelligent decisions at real-time.
Although reinforcement learning is somewhat
flexible, there is little in terms of incorporating it in
the full-chip design flows. The other big bottleneck
is how to combine the Al-based technologies with
the commercially accepted design suites by
Cadence, Synopsys, or Mentor Graphics. There is
incompatibility, fewer APIs and uncertainty with
reliability that slows down the smooth adoption.
Moreover, deep learning models are black-box and
trust issues on the models bother design
engineers, which sometimes need to have model
explainability and formal verification. There are
also challenges on the training of the deep learning
models, there is the requirement of huge labeled
data that is normally a proprietary aspect in the
VLSI field. Even with availability of such datasets, it

Al-Based DRL for
RIEEN Logic — Routing —
Input Synthesis  Path Selection
(Supervisied
Learning)

is very conceivable that models trained on a subset
of technology nodes such as 28nm or 14nm do not
easily generalize to more advanced nodes such as
5nm, due to the large intra-node, intra-technology
differences in design constraints and
characteristics. Such constraints emphasize the
crucial demand to accelerate the development of a
unified, flexible, and verifiable Al-augmented
design automation framework that is capable of
being smoothly adopted into an already
established workflow cycle, and at the same time
allowing extensibility, interpretability, and reliable
functionality.

3. Proposed Framework

In this section, the architecture and
implementation of the suggested Al-driven design
automation framework is given. The plan is to
embed smart learning algorithms at strategic
points in the VLSI design flow to obtain higher
design quality, shorter time to market as well as
better power-performance tradeoffs.

3.1 System Architecture

The suggested framework has a modular structure
which allows uncomplicated incorporation of Al
methods into the customary EDA processes. It is
predictable and capable of being soft, scalable and
suitable to commercial as well as education level
design flows. There are four major phases in the
pipeline:

e Al-Based Logic

Learning)

In step one, the supervised machine learning
predicts optimal gate-level netlists based on
labeled design data, by training supervised models
against high-level of RTL descriptions. Such models
train to trade off area, delay and power. The feature
vectors are obtained based on the HDL
descriptions and synthesis statistics and the model
is learned on proposing optimizations like logic

Synthesis (Supervised

restructuring, multi-level synthesis and gate
replacement.
Transformer- Timing

Based —» Closure& —» GDSII
Estemiation Verification Output

Figure 1a. Al-Integrated VLSI Design Automation Flow
This block diagram outlines the Al-enhanced digital VLSI design pipeline from RTL input to GDSII output. Al-
based logic synthesis using supervised learning initiates the process, followed by Deep Reinforcement
Learning (DRL) for intelligent routing path selection. A transformer-based estimator predicts power and
performance metrics, aiding optimization. Traditional timing closure and verification steps finalize the flow
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before generating the physical layout output. The highlighted green blocks indicate the stages augmented by
Al methodologies.

e Graph Neural Network
Placement Optimization
Placement is in itself a graph structured issue
where all cells or blocks could be considered as
nodes interconnected by edges. Adoption of GNNs
is being used to represent the positioning of

(GNN)-Based

elements through consideration of physical
limitations, net associations, and spatial
Netlist Graph

Feature
Extraction

e pin count
« cell type
« location

associations. The GNN develops the ability to
forecast an optimal positioning area and reduces
congestion, timeline slack penalization. In sharp
contrast with conventional cost functions, GNNs
provide the flexibility to adjust to various design
scales and demands of net complexity through the
use of graph embeddings.

GNN Layers Placement
Graph Prediction
Embeddings

Figure 1b. GNN-Based Placement Prediction Pipeline
This diagram illustrates the placement prediction pipeline using Graph Neural Networks (GNNs). The process
begins with a netlist graph, where feature extraction is performed to gather attributes such as pin count, cell
type, and location. These features are passed through GNN layers to generate graph embeddings, which are
then used to predict optimal placement regions within the layout. This approach enables learning-based
placement decisions driven by structural and contextual information from the netlist.

e Deep Reinforcement Learning (DRL) for
Routing Path Selection

The routing phase is attended to with the help of a

DRL agent that learns routing policies to reduce

wirelength, delay, and congestion. The agent seeks

to navigate through environmental variables that

mimic real world routing situations as it tries out

different path selection choices and gets rewarded
according to measures of timing closure and
congestion. A policy gradient approach is used to
train the agent to come up with strategies
overdeterministic =~ routers, particularly in
congested and haphazard design areas.

Agent Action
Policy
Network :
Environment
1z
A
Reward State jf\{ _ ch ~
e congestion, oo ~ \
. wirelength Layout Grid
timing with Netlist

4

Raoward

Figure 1c. DRL Agent for Routing Path Selection
This reinforcement learning flow diagram illustrates the interaction between the agent and the environment
in a VLSI layout grid. The policy network receives state inputs—such as congestion, wirelength, and timing—
from the environment and outputs routing decisions (actions). Based on the outcomes, a reward signal is
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calculated and used to update the agent’s policy via feedback, enabling intelligent and optimized routing
decisions over time.

e Transformer-Based Power Estimation

Estimation of power is done in transformer-based
deep learning models, which are able to capture
long-range dependencies between nets, modules,
and layers of design. In contrast to power models
that are static (i.e., compute power based upon

gate-level information), the transformer network is
capable of accepting netlists, floorplans and data
on switching activities to estimate the dynamic and
leakage power. This assists early feedback to
power-conscious design implementations without
doing complete gate-level simulations.

Transformer-Based Power Estimation
Model

(o

Floorplan

Switching
Activity

I
A
[ Positional Encoding ]

v

Transformer Encoder
Block

v

Transformer Encoder
Block

v

[ Feedforward Layer ]

‘ Dynamic + Leakage

Power Estimates

!

Output

Figure 1d. Transformer-Based Power Estimation Model
This diagram illustrates the architecture of a transformer-based model for estimating dynamic and leakage
power in VLSI designs. Inputs—including netlist, floorplan, and switching activity—are encoded with
positional information before passing through transformer encoder blocks and a feedforward layer. The
output provides accurate power predictions used for energy-aware design optimization.

3.2 Algorithms Employed

The following Al techniques and architectures are

implemented within the framework to address

specific optimization challenges:

e Policy Gradient Reinforcement Learning
(Proximal Policy Optimization - PPO):

The selection of PPO is due to its consistency and

sustainable action spaces. To train the DRL agent

on global placement and routing it is employed.

Compared to methods that take a naive approach

by updating policies inside a probability ratio

directly, the PPO algorithm (Schulman et al,, 2017)

balances exploration and exploitation because the

algorithm can update policies inside a clipped

probability ratio leading to stable policy updates

without any divergence.

e  Graph Neural Networks (GNNs):

GNNs are applied to the circuit element

connectivity and position characteristics such as

netlist. In GNN structure, the graph convolution
layers capture the neighborhood information and
learn the spatial relation in various design
hierarchies. ParticularLY able to capture the global
effect of local choice settings are such models.

e  Autoencoders for Feature Compression:
Design information is high dimensional during
layout stages. Autoencoders can be exploited to
decrease the feature space by learning compact
representations of layout information (e.g.
congestion maps, thermal profiles). The
dimensionality reduction helps to process them
more quickly and lets downstream Al models
concentrate on the most important features.

The algorithms are encorporated together to offer
intelligent decision making throughout the
pipeline and can be modularly switched out or
retrained into particular design environments or
technological nodes.
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Figure 2. Al Algorithm Stack for Layout Optimization in VLSI Design Automation

This layered block diagram illustrates the interaction of Al modules—Autoencoder, Graph Neural Network
(GNN), and reward-based feedback—for efficient layout optimization. Input representations include netlists,
layout parameters, parasitics, and thermal-congestion maps. The autoencoder compresses high-dimensional
design features, while the GNN processes graph-structured netlist data to guide placement. Reward feedback

from thermal and congestion predictions refines the model iteratively. The final output delivers optimized
placement, efficient routing paths, reduced congestion, thermal compliance, and a low power-delay product

(PDP).

3.3 Workflow Integration framework will be developed with commonly used
Between compatibility with the current workflows  open-source applications and machine learning
and practical applicability, the proposed libraries. Steps in key integration are as follows:
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Figure 3. Workflow Integration of Al-Enhanced EDA Framework
This diagram illustrates the training and deployment workflow of the proposed Al-augmented electronic
design automation (EDA) framework. TensorFlow and PyTorch are used for model training and inference,
targeting supervised learning, transformers, GNNs, and DRL agents. The Al models are integrated with the
OpenROAD toolchain via Python APIs to control placement, routing, and timing analysis. Benchmark
datasets from ISPD and industrial netlists serve as the data foundation, while accelerated training is
performed using NVIDIA RTX 4090 GPUs with CUDA and hyperparameter tuning (Optuna, Grid Search). The
entire pipeline forms a unified, deployable AI-EDA system.

e  Software Stack

To facilitate the implementation of the Al
components, TensorFlow and PyTorch frameworks
are used, which allows the implementation to be
flexible regarding developing, training and testing
the models. Supervised models and transformer
models are largely developed in TensorFlow
whereas, GNNs and DRL agents can be developed
in PyTorch also as it uses dynamic computation
graph and easy prototyping.

e  EDA Tool Integration

Electronics, Communications, and Computing Summit | Jul
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The Al modules are included into an open-source
digital design implementation flow, OpenROAD.
Placement, routing, and timing technologies are
enclosed with Python APIs such that a two-way
data exchange can be used between the EDA flow
and the Al models. It can carry out gate-level
timing analysis using Open Timer that measures
how efficient placement and routing decisions
made using Al are.

° Datasets Used

The models are trained and evaluated based on
benchmark datasets during ISPD 2015 and ISPD
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2019. Such data have floorplanning and placement
issues that represent realistic ASIC design. Also, to
conduct the studies of model generalization to
advanced nodes, the anonymized industrial netlists
of real-world 7nm and 5nm ASIC designs are
employed to validate their correctness.
Preprocessing involves parsing of the files
(DEF/LEF), creating netlist graphs, and feature
extraction to Al models.

e  Training Infrastructure

The training is performed on NVIDIA RTX 4090
GPUs through CUDA acceleration and early
stopping and cross-validation to avoid over-fitting.
The process of hyperparameter selection takes
place with the assistance of the grid search and
Optuna.

With the workflow, Al models are not only precise
but also efficient and executable in regular VLSI
design work built ups.

4. EXPERIMENTAL RESULTS

This part includes experimental evaluation of the
proposed design automation framework which is
Al-enhanced. The aim is to determine the increase
in performance based on design quality, efficiency
and in constraint handling that is obtained by
using the techniques of Al throughout the flow of
VLSI design.

4.1 Benchmark Setup

As an additional and extensive control over the
proposed framework, it was benchmarked not only
on the basis of open-source tools but also on the
industry level with process design kits (PDKs). The
mental ability review was made on the following
arrangement:

e  Technology Node

This was conducted on the TSMC 7nm and 5nm
PDKs, which are two advanced-state-of-the-art

CMOS technology nodes. The selection of these

nodes was chosen in order to verify the efficiency

of the framework used in handling highly

constrained process-variation-sensitive

environments.

e EDA and Al Tools

The physical design flow was implemented by the

use of the OpenROAD suite, which is an automated

RTL-to-GDSII synthesis, placement and routing

solution. Al modules, which are GNNs, DRL agents,

and transformer-based estimators, were

implemented and incorporated based on the

TensorFlow and PyTorch backends. The input of

model inference to OpenROAD was implemented in

a Python wrapper that transfers data and returns

model parameters.

e  Evaluation Metrics

The system’s performance was measured using the

following critical metrics:

o Average Design Time (Total time for logic
synthesis, placement, and routing)

o Power-Delay Product (PDP): Indicator of
energy efficiency

o Wirelength: Total net interconnect length
post-routing

o Thermal Constraint Violation: % of nodes
exceeding thermal thresholds in post-layout
thermal analysis

All experiments were repeated across multiple

runs, and average values are reported to ensure

statistical consistency.

4.2 Key Results

The results of the comparison of the outcomes of
the traditional EDA flow and the proposed Al-
enhanced design framework are presented in the
table below. The system based on Al exceeds the
standard methodology in all significant design
indicators.

Table 1. Comparative Evaluation of Traditional and Al-Enhanced EDA Workflows Across Key Design

Metrics

Metric Traditional Proposed Al- | Improvement

Flow EDA
Avg. Design Time (hrs) 22.5 16.4 127.1%
Power-Delay Product | 10.6 8.6 118.9%
(pl-ns)
Wirelength 1.03x baseline 0.89x baseline 113.5%
Thermal Constraint | 11% 3% 1 72%
Violation

e  Design Time Reduction

Alongside the modules of Al, especially GNN based
placement and DRL inspired routing, convergence
was faster, resulting in a 27.1 percent decrease in
the overall duration of the design cycle.

e  Power-Delay Product (PDP)

The power estimator also helped in real-time
feedback that was active in placement and routing
and this generated almost a 19% gain in energy
efficiency relative to partial performance.
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e  Wirelength Optimization

The smarter predictions of placement resulted in a
13.5 % reduction in total interconnect length and
hence the signal propagation delays were lowered
along with enhanced routability.

e  Thermal Compliance

With the added feature of thermal awareness into
the reward stature of the DRL agent, the
framework made thermal infringement come

down considerably by 72 percent, which gives
credibility to high-density layouts.

An overall summary of these achievements is
shown in Figure 4.1 below in which the percentage
improvements in four core measures of
performance including design time, PDP,
wirelength, and thermal constraint violations have
been estimated between the standard EDA flow
and the proposed Al-accelerated representation.

A Avg. Design Time
225

_ 25 10.6
w

3

£ 164

=

[@)]

® 0.5

(m)

C Wirelength

Relatival Rielank

Traditional AI-EDA

B Power-Delay Pro-

C Wirelength

Traditional AlI-EDA

D Thermal Constraint
Violation

duct

118.9%

1135%

Traditional

Figure 4.1. Performance Comparison of Traditional vs. Al-Enhanced EDA Framework
Performance Comparison of Traditional vs. AI-Enhanced EDA Framework across Design Time, PDP,
Wirelength, and Thermal Compliance. The bar charts and heatmap illustrate significant gains achieved
through Al integration.

4.3 Visual Results

To further illustrate the performance gains of the
proposed system, visual comparisons are
provided:

Figure 4.2- DRL-Optimized Floorplan vs.
Traditional Placement

Here is a side by side comparison of how the DRL
agent compacts its layout in a thermally aware way
than could be done by a generic heuristic-based
placer. The Al-optimized layout has reduced
whitespace, improved macro clustering, and little
net overlapping.

- =

=
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e Figure 4.3 - GNN Congestion Prediction
Heatmap Overlay

This is a representation of the congestion zones

identified by the GNN that are superimposed on

the design layout. The GNN model can predict

congestion at earlier stages unlike rule-based

predictors and ensures that corrections are done

Traditional
Placement

early on during placement and global routing,
therefore lessening routing iterations.

These pictorial outcomes corroborate the
numerical outcomes and serve as the evidence of
the effectiveness of smart modeling in the
prediction and unlikely physical design
bottlenecks.

DRL-Optimized
Floorplan

[ FAr

o

LrOLE

Traditional Placement D Low

5. DISCUSSION

The finding of this paper justifies the revolutionary
possibility of incorporating Artificial Intelligence in
the VLSI design automation process. The suggested
Al-enhanced  framework  showed  uniform
performance gains indicative of scalability and
versatility across various technology nodes (7nm
and 5nm) and divergent design complexities
multiple essential design dimensions, design time,
power-delay product (PDP), wirelength and
thermal compliance.

Among the most excruciating ones are the strength
of the framework on a vast variety of circuit scale
and area, which suggests that the identified models
(specifically the GNN and DRL elements)
extrapolated beyond training sets notably. The
spatial reasoning power of spent Graph Neural
Networks deployed in placement was reported to
be good with both local and global netlist
dependencies being captured effectively. This
spatial awareness became so useful in the case of
the multi-layer interconnect structures whose

placement quality directly influences the
routability and congestion.
The routing module constructed using

reinforcement learning was adaptable in changing
design constraints. Encoding as thermal and
congestion penalties in reward function enabled
the DRL-agent to dynamically change routing of
different iterations of a layout as required to

37

m Moderate
B High

minimize the violation. Such flexibility cannot be
easily produced using traditional heuristic or rule
based routing algorithm.

The transformer-based power estimator was able
to give real time feedback of energy in early stages
of physical design enabling the placement and
routing modules to work towards power-efficient
structures. Such an anticipatory feedback loop
allowed faster convergence of low-PDP solutions
and saved post-layout optimization steps.

Although such results are encouraging, there are a
few restrictions. One essential issue is the
explainability of Al decisions, especially produced
by deep reinforcement learning algorithms, or
transformer models. Such models may be opaque
to debugging, validation of design and engineering
trust. There is a need to increase communication
on explainable Al (XAI) methods to fill this gap so
that decisions made using Artificial Intelligence
(AD) can be audited and checked.

Hardware acceleration is another viable issue.
Although the proposed models are efficient to run
on GPUs in training or inference, their integration
into real-time EDA workflows will require the
hardware acceleratorized optimization of the
model deployment using e.g. TPUs, FPGAs or
dedicated Al inference engines. If Al is to become a
part of the time-critical design flows in the
industrial environment, low-latency training is
essential.
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Moreover, the data dependency is also an
impediment toward scaling up Al models across
foundries and technology nodes. Even though
transfer learning and meta-learning represent the
potential avenues of overcoming data scarcity,
further research is required to guarantee cross
node flexibility.

To put it briefly, this paper solidifies the role and
usefulness of VLSI design automation through Al
The proposed framework that integrates
supervised learning, GNNs, DRL, and transformers
into the modular and extendable pipeline paves the
way of the coming-of-age generation of EDAs tools
in the form of being intelligent, adaptive, and
scalable.

6. CONCLUSION AND FUTURE WORK

In this paper, the authors propose a detailed
framework of Al-assisted design automation that
can indeed tackle the lengthening complexity and
scalability requirements of complex VLSI designs
in the present day. The proposed system delivers
considerable design-time, power-delay product
(PDP), wirelength, and thermal compliance gains
by incorporating supervised learning, Graph
Neural Networks (GNNs), Deep Reinforcement
Learning (DRL) and transformer-based models to
all stages of the design flow, including logic
synthesis, placement, routing, and power
estimation.

These experimental results are tested on TSMC
7nm and 5nm technology nodes and certifies the
soundness and versatility of the framework with
different benchmarks and constraints. It is
noteworthy that spatial awareness through GNNs
allowed intelligent placement, DRL afforded
dynamic flexibility in routing decisions and
transformers afforded anticipatory feedback to
more intelligent, efficient and scalable design
process.

In addition to numerical gains there is evidence of
the viability of integrating incompatible Al
approaches in a modular EDA flow, providing plug-
in compatibility to a growing range of open-source
tools: OpenROAD and Open Timer (Liang and
MacNeill, 2020). This makes the framework a
practical proposal of a next-generation
environment of EDA environments, which is
applicable to academic studies as well as industrial
design rules.

Future Work

Following the positive outcome of the current
research, future research will consider a number of
directions with the aim of improving both the
applicability and performance of the proposed
framework. One of them is hardware-software co-
design with embedded Al accelerators wherein Al
inference engines are incorporated into design
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tools which is enabled by dedicated hardware
blocks like TPUs, NPUs, or Al-supported FPGAs in
order to perform low-latency and real-time
decisions at every iteration of a design procedure.
The other direction is to incorporate the
framework into FPGA-specific design flows
through model customization to match the
peculiarities of reconfigurable architecture such as
logic blocks usage, reconfiguration delay, and
routing generality. In addition, transfer learning
will also be utilized to enhance technology
portability so as to adapt pre-trained models
across varied technology nodes and design types,
e.g. moving simulation-based datasets to a silicon-
proven design and thus mitigate training
overheads. The introduction of certifiable and
explainable Al models is necessary with respect to
the reliability of Al-driven decisions. Such models
will aid in transparency and formal verification
which is highly significant in safety-critical /
mission-critical forms of semiconductor system.
Finally, human in the loop feedback based
optimization techniques will be considered as the
means to balance the capabilities of Al based
reasoning and intuition of expert designers. The
study eventually paves the way to the paradigm
shift in VLSI design automation in which
intelligent, adaptive, and collaborative systems will
be playing the role of innovation in edge Al devices,
custom silicon platforms, and high-performance
computing systems much more.
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