
    28 Electronics, Communications, and Computing Summit | Jul - Sep 2024 

 

Electronics, Communications, and Computing Summit                                   

Vol. 2, No. 3, Jul - Sep 2024, pp. 28-39 

ISSN: 3107-8222, DOI: https://doi.org/10.17051/ECC/02.03.04                                                                                                                                                                                               

  

 

 
 

Intelligent Design Automation in VLSI Systems: Leveraging AI 
for Future Electronics Applications 

 

Nisha Milind Shrirao 
 

Department Of Electrical And Electronics Engineering, Kalinga University, Raipur, India, 
Email: nisha.milind@kalingauniversity.ac.in 

 

Article Info 
 

ABSTRACT  

Article history: 

Received : 14.07.2024 
Revised    : 16.08.2024 
Accepted  : 18.09.2024 

 

 The complexity of the current VLSI (Very Large-Scale Integration) 
systems is increasing because of the number of the transistor, tighter 
design rules, and faster, power-efficient chips. The functionality of 
traditional Electronic Design Automation (EDA) tools has been 
inadequate at supporting the challenges that lie ahead that come with 
decreasing technology nodes like 7nm and 5nm and the requirements to 
meet several design constraints. The work will introduce and verify an 
intelligent design automation system with an AI-enhanced intelligent 
design, which uses state-of-the-art machine learning algorithms to 
support intelligent design efficiency, layout quality enhancement and 
power-performance optimization. The framework consists of Deep 
Reinforcement Learning (DRL), Graph Neural Networks (GNNs), and 
Transfer Learning at the various levels of the VLSI design flow such as 
logic synthesis, floorplanning, placement, routing, and timing analysis. 
The assessments were performed based on industry-related benchmark 
circuits (simulated using open-road and tensor flow containing 
modules). Some of the key performance indicators were design time; 
power-delay product (PDP); wirelength and thermal violation rate. As 
proved experimentally, the proposed framework leads to an 
improvement of the overall design time by an amount of up to 27% and 
PDP enhancement by a margin of around 19 %, in comparison to the 
traditional EDA methods. Improved performance was also noted in 
problems with congestion management, wirelength and thermal 
constraint at both the 7nm and 5nm nodes. Such findings serve to testify 
to the viability of AI-powered approaches in the redefinition of EDA 
frameworks and position the designed framework as a viable means of 
addressing next-gen electronics, including edge AI hardware and more 
elaborate SoCs. 
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1. INTRODUCTION 
Moore cognizance, which is the fuel that motivated 
the dependency of transistor density, has reshaped 
the paradigm behind circuit design and 
development of Very Large-Scale Integrations 
(VLSI), due to exponential growth. But with the 
increasing technology node sizes to sub 10nm 
technologies like 7nm and 5nm, semiconductor 
fabricators of chips are finding it extremely hard to 
sustain their performance, power rates, and design 
continuity. The above challenges are due to higher 
design complexity, signal integrity, thermal and 
higher sensitivity to process variations. 
Consequently, the Electronic Design Automation 
(EDA) ecosystem that has long been using static 
rule-based heuristics and deterministic algorithms 
are under pressure to change and adjust to the 
needs of the next-generation electronics. 
Ideal EDA systems go through a sequential and 
straight path design flow which includes logic 

synthesis, floor planning, placement, routing and 
timing closure. Although these tools have been 
good to the industry, their scalability and flexibility 
are getting reduced. With the reduction in design 
cycle and the growing pressure on first-time-right 
silicon, adopting intelligent, adaptive / are in a 
more data-driven and dynamic way is more and 
more urgent with a view of automating and 
optimizing the VLSI design process. 
Artificial Intelligence (AI), being an effective 
technology in the field of pattern recognition, 
optimization, and decision-making, has turned out 
to be a potent driver of EDA innovation. Graph 
Neural Networks (GNNs), Deep Learning (DL), and 
Reinforcement Learning (RL) are especially 
suitable techniques with which to tackle the 
combinatorial complexity of VLSI design problems, 
and in particular their graph-based nature. The 
success of initial scholarly work, and industry, 
including Google RI-based floorplanning and GNN-
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enabled timing prediction, demonstrates that AI 
may contribute greatly to the efficiency, quality, 
and productivity of designs. 
In spite of this progress, EDA use cases of AI are 
still disparate and most of the proposed solutions 
deal only with individual steps in the design 
process. There is also a lack of a unified and 
scalable framework of AI empowered design 
automation integrating several different AI 
paradigms over the whole VLSI workflow. In 
addition, few lists have been focused on how these 
AI-based systems might work with an advanced 
tech node and realistic design limits. 
This research paper presents the solution to the 
aforementioned limitations in the form of an 
intelligent design automation framework that is 
capable of automating and optimizing key stages of 
the VLSI design process using Deep Reinforcement 
Learning, Graph Neural Networks, and Transfer 
Learning. The benchmark study evaluates the 
framework in standard benchmark circuits of 7nm 
and 5nm nodes by using industry appropriate 
measures like design time, power-delay product 
(PDP), wirelength, and violations of thermal 
constraints. It will show how AI methods can be 
used to minimize the effort required in developing 
design as well as how AI methods can be used to 
improve chip performance, and in the ability to 
more effectively scale and efficiently develop VLSI 
in electronic devices of the future. 
The study also relates to the growing field of AI-
EDA fusion in designing a comprehensive and 
decomposable automation system, establishing the 
groundwork of intelligent design environments 
that will enable faster products development in 
high-performance computing, edge AI devices, and 
Internet-of-Things (IoT) frameworks. 
 
2. LITERATURE REVIEW 
2.1 Traditional Design Automation  
Conventional VLSI design flow consist of a few 
distinct steps, such as logic synthesis, 
floorplanning, placement, routing and verification. 
These procedures find their organization with the 
help of Electronic Design Automation (EDA) tools 
that convert the high-level descriptions of a 
hardware to the optimized physical layouts which 
can be fabricated. In logic synthesis, a high-level 
description (e.g. RTL) is translated into a gate-level 
representation and is optimized according to 
constraints, including delay, area and power. 
Floorplanning and placement is all about spatial 
layout of standard cells and functional blocks in the 
chip design and the objective is to minimize the 
length of interconnects, timing problems. These 
components are interconnected using netlists to 
route them, whereas timing closure is addressed 
using static timing analysis (STA) as well as the 

functional verification to identify any logical 
errors.  
In spite of being mature, robust and heuristics-
based, these traditional tools rely on rule-based 
heuristics and fixed cost functions, which pose a 
limitation on their scalability given escalating 
design complexity. The design space in sub-10nm 
nodes (especially) is very cursed as it is high-
dimensional and heavily constrained, driven by the 
parameter sets such as lithographic resistance- and 
variation-, process variability, and increasing 
power-performance-area ( PPA) requirements. The 
static approaches are bad at flitting through this 
space efficiently and therefore may produce sub-
optimal solutions and longer design loops. 
Moreover, they do not have the ability to be 
learned based on earlier designs or change to meet 
the new limitations as they run. 
 
2.2 AI in Electronic Design Automation 
Recently, Artificial Intelligence (AI), specifically, 
machine learning (ML) and deep learning (DL) has 
been considered as a potent method of overcoming 
the weaknesses of conventional EDA tools. A 
number of prominent works show how AI can be 
utilized at different phases of VLSI design. Chip 
floorplanning is already successfully solved by 
Deep Reinforcement Learning (DRL). Mirhoseini et 
al. (2021) performed a landmark study and 
showed that in hours, DRL agents could learn to 
produce floorplans that are superior to those 
produced by human engineers in wirelength and 
congestion. Their approach turned out to be 
commercially successful and established the move 
in the direction of AI-driven design in commerce. 
The Graph Neural Networks (GNNs) have been 
demonstrated to be potential in representing the 
spatial and connectivity data that is characteristic 
to circuit layouts. Yu et al. (2022) used GNNs to 
predict timing and congestion, which exceeded the 
performance of the traditional analytical models, 
and allowed making more realistic design choices 
in the earlier stages. GNNs are better at capturing 
the topology of design graphs, as it enables them to 
capture interconnect relationships and physical 
proximity in a more natural way than when using 
standard approaches.  
Also in the field of analog design, where there is 
limited data availability and a design is sensitive to 
the data, meta-learning and transfer learning 
techniques have been presented. Chen et al. (2022) 
employ meta-learning to train a generator of 
analog layout to adapt to new circuit topologies 
with little retraining to speed up layout generation. 
Such flexibility renders the AI particularly 
appealing to analog/mixed-signal (AMS) 
applications where designing is time-consuming 
and expertise-limited. In totality, this shows that AI 
has the potential of improving performance, 
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driving turnaround time, and pushing power-
performance-area (PPA) metrics. They can be 
however limited in scope when compared with a 
true end to end integrated AI-based design flow by 
being focused on individual stages (i.e. 
floorplanning or routing). 
 
2.3 Research Gaps  
Although the application of AI to EDA is gaining a 
considerable pace, there are some critical 
problems that impede the extensive introduction 
and commercial implementation. Currently 
available AI solutions are isolated where they only 
support a subset of the VLSI design lifecycle. 
Higher level frameworks which combine AI 
techniques in a harmonious way are lacking in 
synthesis, floorplan, placement, routing and 
verification. Such discontinuity has the potential of 
yielding suboptimal cross stage interactions and 
constrains the potential of AI to exploit the design 
process in an integrated fashion. Furthermore, the 
existing AI solutions are frequently not capable of 
adapting themselves dynamically to the changing 
constraints (thermal hotspots, IR-drop, sudden 
change in design rules), in otherwise iterative 
processes. This flexibility becomes critical in on the 
ground situations which require multi-physics 
interactions, variability of processes and capability 
of making intelligent decisions at real-time. 
Although reinforcement learning is somewhat 
flexible, there is little in terms of incorporating it in 
the full-chip design flows. The other big bottleneck 
is how to combine the AI-based technologies with 
the commercially accepted design suites by 
Cadence, Synopsys, or Mentor Graphics. There is 
incompatibility, fewer APIs and uncertainty with 
reliability that slows down the smooth adoption.  
Moreover, deep learning models are black-box and 
trust issues on the models bother design 
engineers, which sometimes need to have model 
explainability and formal verification. There are 
also challenges on the training of the deep learning 
models, there is the requirement of huge labeled 
data that is normally a proprietary aspect in the 
VLSI field. Even with availability of such datasets, it 

is very conceivable that models trained on a subset 
of technology nodes such as 28nm or 14nm do not 
easily generalize to more advanced nodes such as 
5nm, due to the large intra-node, intra-technology 
differences in design constraints and 
characteristics. Such constraints emphasize the 
crucial demand to accelerate the development of a 
unified, flexible, and verifiable AI-augmented 
design automation framework that is capable of 
being smoothly adopted into an already 
established workflow cycle, and at the same time 
allowing extensibility, interpretability, and reliable 
functionality. 
 
3. Proposed Framework 
In this section, the architecture and 
implementation of the suggested AI-driven design 
automation framework is given. The plan is to 
embed smart learning algorithms at strategic 
points in the VLSI design flow to obtain higher 
design quality, shorter time to market as well as 
better power-performance tradeoffs. 
 
3.1 System Architecture 
The suggested framework has a modular structure 
which allows uncomplicated incorporation of AI 
methods into the customary EDA processes. It is 
predictable and capable of being soft, scalable and 
suitable to commercial as well as education level 
design flows. There are four major phases in the 
pipeline: 
 AI-Based Logic Synthesis (Supervised 

Learning) 
In step one, the supervised machine learning 
predicts optimal gate-level netlists based on 
labeled design data, by training supervised models 
against high-level of RTL descriptions. Such models 
train to trade off area, delay and power. The feature 
vectors are obtained based on the HDL 
descriptions and synthesis statistics and the model 
is learned on proposing optimizations like logic 
restructuring, multi-level synthesis and gate 
replacement. 

 

 
Figure 1a. AI-Integrated VLSI Design Automation Flow 

This block diagram outlines the AI-enhanced digital VLSI design pipeline from RTL input to GDSII output. AI-
based logic synthesis using supervised learning initiates the process, followed by Deep Reinforcement 

Learning (DRL) for intelligent routing path selection. A transformer-based estimator predicts power and 
performance metrics, aiding optimization. Traditional timing closure and verification steps finalize the flow 
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before generating the physical layout output. The highlighted green blocks indicate the stages augmented by 
AI methodologies. 

 
 Graph Neural Network (GNN)-Based 

Placement Optimization 
Placement is in itself a graph structured issue 
where all cells or blocks could be considered as 
nodes interconnected by edges. Adoption of GNNs 
is being used to represent the positioning of 
elements through consideration of physical 
limitations, net associations, and spatial 

associations. The GNN develops the ability to 
forecast an optimal positioning area and reduces 
congestion, timeline slack penalization. In sharp 
contrast with conventional cost functions, GNNs 
provide the flexibility to adjust to various design 
scales and demands of net complexity through the 
use of graph embeddings. 

 

 
Figure 1b. GNN-Based Placement Prediction Pipeline 

This diagram illustrates the placement prediction pipeline using Graph Neural Networks (GNNs). The process 
begins with a netlist graph, where feature extraction is performed to gather attributes such as pin count, cell 
type, and location. These features are passed through GNN layers to generate graph embeddings, which are 

then used to predict optimal placement regions within the layout. This approach enables learning-based 
placement decisions driven by structural and contextual information from the netlist. 

 
 Deep Reinforcement Learning (DRL) for 

Routing Path Selection 
The routing phase is attended to with the help of a 
DRL agent that learns routing policies to reduce 
wirelength, delay, and congestion. The agent seeks 
to navigate through environmental variables that 
mimic real world routing situations as it tries out 

different path selection choices and gets rewarded 
according to measures of timing closure and 
congestion. A policy gradient approach is used to 
train the agent to come up with strategies 
overdeterministic routers, particularly in 
congested and haphazard design areas. 

 

 
Figure 1c. DRL Agent for Routing Path Selection 

This reinforcement learning flow diagram illustrates the interaction between the agent and the environment 
in a VLSI layout grid. The policy network receives state inputs—such as congestion, wirelength, and timing—

from the environment and outputs routing decisions (actions). Based on the outcomes, a reward signal is 
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calculated and used to update the agent’s policy via feedback, enabling intelligent and optimized routing 
decisions over time. 

 
 Transformer-Based Power Estimation 
Estimation of power is done in transformer-based 
deep learning models, which are able to capture 
long-range dependencies between nets, modules, 
and layers of design. In contrast to power models 
that are static (i.e., compute power based upon 

gate-level information), the transformer network is 
capable of accepting netlists, floorplans and data 
on switching activities to estimate the dynamic and 
leakage power. This assists early feedback to 
power-conscious design implementations without 
doing complete gate-level simulations. 

 

 
Figure 1d. Transformer-Based Power Estimation Model 

This diagram illustrates the architecture of a transformer-based model for estimating dynamic and leakage 
power in VLSI designs. Inputs—including netlist, floorplan, and switching activity—are encoded with 

positional information before passing through transformer encoder blocks and a feedforward layer. The 
output provides accurate power predictions used for energy-aware design optimization. 

 
3.2 Algorithms Employed 
The following AI techniques and architectures are 
implemented within the framework to address 
specific optimization challenges: 
 Policy Gradient Reinforcement Learning 

(Proximal Policy Optimization - PPO): 
The selection of PPO is due to its consistency and 
sustainable action spaces. To train the DRL agent 
on global placement and routing it is employed. 
Compared to methods that take a naive approach 
by updating policies inside a probability ratio 
directly, the PPO algorithm (Schulman et al., 2017) 
balances exploration and exploitation because the 
algorithm can update policies inside a clipped 
probability ratio leading to stable policy updates 
without any divergence. 
 Graph Neural Networks (GNNs): 
GNNs are applied to the circuit element 
connectivity and position characteristics such as 

netlist. In GNN structure, the graph convolution 
layers capture the neighborhood information and 
learn the spatial relation in various design 
hierarchies. ParticularLY able to capture the global 
effect of local choice settings are such models. 
 Autoencoders for Feature Compression: 
Design information is high dimensional during 
layout stages. Autoencoders can be exploited to 
decrease the feature space by learning compact 
representations of layout information (e.g. 
congestion maps, thermal profiles). The 
dimensionality reduction helps to process them 
more quickly and lets downstream AI models 
concentrate on the most important features. 
The algorithms are encorporated together to offer 
intelligent decision making throughout the 
pipeline and can be modularly switched out or 
retrained into particular design environments or 
technological nodes. 
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Figure 2. AI Algorithm Stack for Layout Optimization in VLSI Design Automation 

This layered block diagram illustrates the interaction of AI modules—Autoencoder, Graph Neural Network 
(GNN), and reward-based feedback—for efficient layout optimization. Input representations include netlists, 
layout parameters, parasitics, and thermal-congestion maps. The autoencoder compresses high-dimensional 
design features, while the GNN processes graph-structured netlist data to guide placement. Reward feedback 

from thermal and congestion predictions refines the model iteratively. The final output delivers optimized 
placement, efficient routing paths, reduced congestion, thermal compliance, and a low power-delay product 

(PDP). 
 
3.3 Workflow Integration 
Between compatibility with the current workflows 
and practical applicability, the proposed 

framework will be developed with commonly used 
open-source applications and machine learning 
libraries. Steps in key integration are as follows: 
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Figure 3. Workflow Integration of AI-Enhanced EDA Framework 

This diagram illustrates the training and deployment workflow of the proposed AI-augmented electronic 
design automation (EDA) framework. TensorFlow and PyTorch are used for model training and inference, 
targeting supervised learning, transformers, GNNs, and DRL agents. The AI models are integrated with the 

OpenROAD toolchain via Python APIs to control placement, routing, and timing analysis. Benchmark 
datasets from ISPD and industrial netlists serve as the data foundation, while accelerated training is 

performed using NVIDIA RTX 4090 GPUs with CUDA and hyperparameter tuning (Optuna, Grid Search). The 
entire pipeline forms a unified, deployable AI-EDA system. 

 
 Software Stack 
To facilitate the implementation of the AI 
components, TensorFlow and PyTorch frameworks 
are used, which allows the implementation to be 
flexible regarding developing, training and testing 
the models. Supervised models and transformer 
models are largely developed in TensorFlow 
whereas, GNNs and DRL agents can be developed 
in PyTorch also as it uses dynamic computation 
graph and easy prototyping. 
 
 EDA Tool Integration 

The AI modules are included into an open-source 
digital design implementation flow, OpenROAD. 
Placement, routing, and timing technologies are 
enclosed with Python APIs such that a two-way 
data exchange can be used between the EDA flow 
and the AI models. It can carry out gate-level 
timing analysis using Open Timer that measures 
how efficient placement and routing decisions 
made using AI are. 
 
 Datasets Used 
The models are trained and evaluated based on 
benchmark datasets during ISPD 2015 and ISPD 
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2019. Such data have floorplanning and placement 
issues that represent realistic ASIC design. Also, to 
conduct the studies of model generalization to 
advanced nodes, the anonymized industrial netlists 
of real-world 7nm and 5nm ASIC designs are 
employed to validate their correctness. 
Preprocessing involves parsing of the files 
(DEF/LEF), creating netlist graphs, and feature 
extraction to AI models. 
 
 Training Infrastructure 
The training is performed on NVIDIA RTX 4090 
GPUs through CUDA acceleration and early 
stopping and cross-validation to avoid over-fitting. 
The process of hyperparameter selection takes 
place with the assistance of the grid search and 
Optuna. 
With the workflow, AI models are not only precise 
but also efficient and executable in regular VLSI 
design work built ups. 
 
4. EXPERIMENTAL RESULTS 
This part includes experimental evaluation of the 
proposed design automation framework which is 
AI-enhanced. The aim is to determine the increase 
in performance based on design quality, efficiency 
and in constraint handling that is obtained by 
using the techniques of AI throughout the flow of 
VLSI design. 
 
4.1 Benchmark Setup 
As an additional and extensive control over the 
proposed framework, it was benchmarked not only 
on the basis of open-source tools but also on the 
industry level with process design kits (PDKs). The 
mental ability review was made on the following 
arrangement: 
 Technology Node 
This was conducted on the TSMC 7nm and 5nm 
PDKs, which are two advanced-state-of-the-art 

CMOS technology nodes. The selection of these 
nodes was chosen in order to verify the efficiency 
of the framework used in handling highly 
constrained process-variation-sensitive 
environments. 
 EDA and AI Tools 
The physical design flow was implemented by the 
use of the OpenROAD suite, which is an automated 
RTL-to-GDSII synthesis, placement and routing 
solution. AI modules, which are GNNs, DRL agents, 
and transformer-based estimators, were 
implemented and incorporated based on the 
TensorFlow and PyTorch backends. The input of 
model inference to OpenROAD was implemented in 
a Python wrapper that transfers data and returns 
model parameters. 
 Evaluation Metrics 
The system’s performance was measured using the 
following critical metrics: 
o Average Design Time (Total time for logic 

synthesis, placement, and routing) 
o Power-Delay Product (PDP): Indicator of 

energy efficiency 
o Wirelength: Total net interconnect length 

post-routing 
o Thermal Constraint Violation: % of nodes 

exceeding thermal thresholds in post-layout 
thermal analysis 

All experiments were repeated across multiple 
runs, and average values are reported to ensure 
statistical consistency. 
 
4.2 Key Results 
The results of the comparison of the outcomes of 
the traditional EDA flow and the proposed AI-
enhanced design framework are presented in the 
table below. The system based on AI exceeds the 
standard methodology in all significant design 
indicators. 

 
Table 1. Comparative Evaluation of Traditional and AI-Enhanced EDA Workflows Across Key Design 

Metrics 
Metric Traditional 

Flow 
Proposed AI-
EDA 

Improvement 

Avg. Design Time (hrs) 22.5 16.4 ↓ 27.1% 

Power-Delay Product 
(pJ·ns) 

10.6 8.6 ↓ 18.9% 

Wirelength 1.03× baseline 0.89× baseline ↓ 13.5% 

Thermal Constraint 
Violation 

11% 3% ↓ 72% 

 
 Design Time Reduction 
Alongside the modules of AI, especially GNN based 
placement and DRL inspired routing, convergence 
was faster, resulting in a 27.1 percent decrease in 
the overall duration of the design cycle. 
 

 Power-Delay Product (PDP) 
The power estimator also helped in real-time 
feedback that was active in placement and routing 
and this generated almost a 19% gain in energy 
efficiency relative to partial performance. 
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 Wirelength Optimization 
The smarter predictions of placement resulted in a 
13.5 % reduction in total interconnect length and 
hence the signal propagation delays were lowered 
along with enhanced routability. 
 
 Thermal Compliance 
With the added feature of thermal awareness into 
the reward stature of the DRL agent, the 
framework made thermal infringement come 

down considerably by 72 percent, which gives 
credibility to high-density layouts. 
An overall summary of these achievements is 
shown in Figure 4.1 below in which the percentage 
improvements in four core measures of 
performance including design time, PDP, 
wirelength, and thermal constraint violations have 
been estimated between the standard EDA flow 
and the proposed AI-accelerated representation. 

 

 
Figure 4.1. Performance Comparison of Traditional vs. AI-Enhanced EDA Framework 

Performance Comparison of Traditional vs. AI-Enhanced EDA Framework across Design Time, PDP, 
Wirelength, and Thermal Compliance. The bar charts and heatmap illustrate significant gains achieved 

through AI integration. 
 
4.3 Visual Results 
To further illustrate the performance gains of the 
proposed system, visual comparisons are 
provided: 
 Figure 4.2– DRL-Optimized Floorplan vs. 

Traditional Placement 

Here is a side by side comparison of how the DRL 
agent compacts its layout in a thermally aware way 
than could be done by a generic heuristic-based 
placer. The AI-optimized layout has reduced 
whitespace, improved macro clustering, and little 
net overlapping. 
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 Figure 4.3 – GNN Congestion Prediction 
Heatmap Overlay 

This is a representation of the congestion zones 
identified by the GNN that are superimposed on 
the design layout. The GNN model can predict 
congestion at earlier stages unlike rule-based 
predictors and ensures that corrections are done 

early on during placement and global routing, 
therefore lessening routing iterations. 
These pictorial outcomes corroborate the 
numerical outcomes and serve as the evidence of 
the effectiveness of smart modeling in the 
prediction and unlikely physical design 
bottlenecks. 

 

 
 
5. DISCUSSION 
The finding of this paper justifies the revolutionary 
possibility of incorporating Artificial Intelligence in 
the VLSI design automation process. The suggested 
AI-enhanced framework showed uniform 
performance gains indicative of scalability and 
versatility across various technology nodes (7nm 
and 5nm) and divergent design complexities 
multiple essential design dimensions, design time, 
power-delay product (PDP), wirelength and 
thermal compliance. 
Among the most excruciating ones are the strength 
of the framework on a vast variety of circuit scale 
and area, which suggests that the identified models 
(specifically the GNN and DRL elements) 
extrapolated beyond training sets notably. The 
spatial reasoning power of spent Graph Neural 
Networks deployed in placement was reported to 
be good with both local and global netlist 
dependencies being captured effectively. This 
spatial awareness became so useful in the case of 
the multi-layer interconnect structures whose 
placement quality directly influences the 
routability and congestion. 
The routing module constructed using 
reinforcement learning was adaptable in changing 
design constraints. Encoding as thermal and 
congestion penalties in reward function enabled 
the DRL-agent to dynamically change routing of 
different iterations of a layout as required to 

minimize the violation. Such flexibility cannot be 
easily produced using traditional heuristic or rule 
based routing algorithm. 
The transformer-based power estimator was able 
to give real time feedback of energy in early stages 
of physical design enabling the placement and 
routing modules to work towards power-efficient 
structures. Such an anticipatory feedback loop 
allowed faster convergence of low-PDP solutions 
and saved post-layout optimization steps. 
Although such results are encouraging, there are a 
few restrictions. One essential issue is the 
explainability of AI decisions, especially produced 
by deep reinforcement learning algorithms, or 
transformer models. Such models may be opaque 
to debugging, validation of design and engineering 
trust. There is a need to increase communication 
on explainable AI (XAI) methods to fill this gap so 
that decisions made using Artificial Intelligence 
(AI) can be audited and checked. 
Hardware acceleration is another viable issue. 
Although the proposed models are efficient to run 
on GPUs in training or inference, their integration 
into real-time EDA workflows will require the 
hardware acceleratorized optimization of the 
model deployment using e.g. TPUs, FPGAs or 
dedicated AI inference engines. If AI is to become a 
part of the time-critical design flows in the 
industrial environment, low-latency training is 
essential. 
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Moreover, the data dependency is also an 
impediment toward scaling up AI models across 
foundries and technology nodes. Even though 
transfer learning and meta-learning represent the 
potential avenues of overcoming data scarcity, 
further research is required to guarantee cross 
node flexibility. 
To put it briefly, this paper solidifies the role and 
usefulness of VLSI design automation through AI. 
The proposed framework that integrates 
supervised learning, GNNs, DRL, and transformers 
into the modular and extendable pipeline paves the 
way of the coming-of-age generation of EDAs tools 
in the form of being intelligent, adaptive, and 
scalable. 
 
6. CONCLUSION AND FUTURE WORK 
In this paper, the authors propose a detailed 
framework of AI-assisted design automation that 
can indeed tackle the lengthening complexity and 
scalability requirements of complex VLSI designs 
in the present day. The proposed system delivers 
considerable design-time, power-delay product 
(PDP), wirelength, and thermal compliance gains 
by incorporating supervised learning, Graph 
Neural Networks (GNNs), Deep Reinforcement 
Learning (DRL) and transformer-based models to 
all stages of the design flow, including logic 
synthesis, placement, routing, and power 
estimation. 
These experimental results are tested on TSMC 
7nm and 5nm technology nodes and certifies the 
soundness and versatility of the framework with 
different benchmarks and constraints. It is 
noteworthy that spatial awareness through GNNs 
allowed intelligent placement, DRL afforded 
dynamic flexibility in routing decisions and 
transformers afforded anticipatory feedback to 
more intelligent, efficient and scalable design 
process. 
In addition to numerical gains there is evidence of 
the viability of integrating incompatible AI 
approaches in a modular EDA flow, providing plug-
in compatibility to a growing range of open-source 
tools: OpenROAD and Open Timer (Liang and 
MacNeill, 2020). This makes the framework a 
practical proposal of a next-generation 
environment of EDA environments, which is 
applicable to academic studies as well as industrial 
design rules. 
 
Future Work 
Following the positive outcome of the current 
research, future research will consider a number of 
directions with the aim of improving both the 
applicability and performance of the proposed 
framework. One of them is hardware-software co-
design with embedded AI accelerators wherein AI 
inference engines are incorporated into design 

tools which is enabled by dedicated hardware 
blocks like TPUs, NPUs, or AI-supported FPGAs in 
order to perform low-latency and real-time 
decisions at every iteration of a design procedure. 
The other direction is to incorporate the 
framework into FPGA-specific design flows 
through model customization to match the 
peculiarities of reconfigurable architecture such as 
logic blocks usage, reconfiguration delay, and 
routing generality. In addition, transfer learning 
will also be utilized to enhance technology 
portability so as to adapt pre-trained models 
across varied technology nodes and design types, 
e.g. moving simulation-based datasets to a silicon-
proven design and thus mitigate training 
overheads. The introduction of certifiable and 
explainable AI models is necessary with respect to 
the reliability of AI-driven decisions. Such models 
will aid in transparency and formal verification 
which is highly significant in safety-critical / 
mission-critical forms of semiconductor system. 
Finally, human in the loop feedback based 
optimization techniques will be considered as the 
means to balance the capabilities of AI based 
reasoning and intuition of expert designers. The 
study eventually paves the way to the paradigm 
shift in VLSI design automation in which 
intelligent, adaptive, and collaborative systems will 
be playing the role of innovation in edge AI devices, 
custom silicon platforms, and high-performance 
computing systems much more. 
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