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 The paper focuses on designing and testing neuromorphic systems in 
hardware, and in particular those designed to perform edge AI systems 
with low power and real-time performance in mind. The main aim is to 
design Event-driven computing systems that emulate neural processes 
of nature to obtain energy-efficient inference at the edge. A CMOS-based 
and memristor-based paradigm of spiking neural network (SNN) 
accelerators are discussed. Leaky integrate-and-fire (LIF) neurons and 
leaky integrate-and-fire (LIF) neurons as well as synaptic integration 
instances are mapped to FPGA platforms as modular RTL 
implementations ready to be exploited and benchmarked in this FPGA-
based prototyping workflow. Edge-relevant tasks optimal to the 
proposed neuromorphic cores include handwritten digit classification 
and dynamic vision-based gesture recognition and voice command 
detection. Power-performance comparing with the traditional multiply-
accumulate (MAC) based AI accelerators is discussed. There are up to 70 
percent dynamic power reduction and a 3x factor improvement in 
energy-per-inference has been observed, reflecting the architectural 
compatibility of SNNs to constrained edge environments. More so, this 
paper reviews trade-offs of on-chip learning flexibility, inversion latency, 
and hardware extensiveness. A deployment model at system level is 
proposed to provide an example of integration in the real world into 
edge AI stacks with emphasis on the modularity of interaction between 
neuromorphic processing components and embedded components. The 
results confirm that neuromorphic architectures bring very strong 
benefits to edge applications and especially in latency-, energy-, and 
area-sensitive applications. The scale of such a system, as well as the 
related design considerations, is an additional topic of interest raised in 
the work as it provides insight into future directions of ASIC design and 
adaption to hybrid edge-AI pipelines. 
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1. INTRODUCTION 
The high rate of edge computing devices coming 
into various fields like smart wearables, 
autonomous sensors and IoT systems has 
increased the necessity of low latency, energy 
efficient, artificial intelligence (AI) on the edge. 
Traditional AI accelerators that are often digital 
von Neumann systems are highly dependent on 
dense multiply-accumulate (MAC) functions that 
are power-hungry and not performant to tighter 
energy and low-latency demands at the edge. They 
are memory bottlenecks too because computing 
and storing have been separated and this increases 
the amount of energy to move the data and 
restricts real time responsiveness. Neuromorphic 
computing is an alternative inspired by biology, 
whereby computation is event-based whereby 
each computation tightly interacts with memory, 
emulating the structure and dynamics of the 

human brain. The fundamental computational 
model used in neuromorphic systems is Spiking 
Neural Networks (SNNs), and they compute 
information using sparse, spike-based signaling, 
which allow truly ultra-low power utilize, and they 
are inherently asynchronous. Existing successful 
prototyping of hardware (like the Loihi (Intel, 
2019) or TrueNorth (Merolla et al., 2014) systems) 
have proven attractive energy characteristics, yet 
are too advanced (or domain-specific) to scale to 
real-world edge AI applications (Davies et al., 
2018). Nevertheless, existing neuromorphic 
hardware is not modular, not reconfigurable and 
has not been benchmarked under realistic edge 
workloads. In addition, architectural complexity, 
power efficiency, and inference accuracy trade-offs 
in constrained settings are under-studied.  
Contributions that fill these gaps are characterizing 
and evaluating 2 RTL-level implementations of 
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neuromorphic hardware, memristor- and CMOS- 
based accelerators of SNNs focused on edge AI 
applications, designed in this paper. Our evaluation 
on the use of FPGA prototyping and workload 
simulation on power, latency and scalability leads 
to the provision of a practical roadmap on the 
future ASIC integration into edge AI applications. 
The described neuromorphic hardware is 
especially well-suited to real-time edge AI 
applications like wearable health devices, 
autonomous environmental monitoring, localable 
speech or gesture recognition systems, and so on, 
where low power, on-chip learning, and very-low 
latency lifetime requirements are paramount. 
 
2. RELATED WORK 
A number of neuromorphic hardware systems have 
more recently been developed to simulate brain-
like computation using spiking neural networks 
(SNNs) and event-driven systems. Markedly, Intel 
Loihi (Davies et al., 2018) introduces 
programmable SNN brains on a chip with on-chip 
learning, providing energy-efficient real-time 
inference to execute a robotic and cognitive 
processing. A massively parallel neurosynaptic 
chip with more than one million neurons and 256 
million synapses was created by IBM TrueNorth 
(Merolla et al., 2014) that is extremely energy- 
efficient at pattern recognition. Equally, 
BrainScaleS (Schemmel et al., 2020) applies the 
analog VLSI circuit to the SNN emulation at high-
speed rates and hybrid learning-experiments, 
especially in neuroscience studies. These platforms 
are mostly architected in centralized or lab scale 
settings though they have significant architectural 
innovations and do not scale well to the edge 
setting. They can be code-dependent, chip-sized, 
non-industry-standard low-power interface and 
customization options. Moreover, they are complex 
and therefore hard to integrate into resource-
constrained systems at the edges especially when 
real-time guarantees, power-restricted budgets, 
task-specific reconfigurabilities are needed. 
Furthermore, there are a few reports of 
comparative architectural assessment in realistic 
edge workloads. There is little systematic 
comparison of power/latency/inference accuracy 
of SNN designs over microcontroller-like or FPGA-
level hardware. The absence of common metrics 
and publicly available architectural foundations in 
neuromorphic computing decreases the feasibility 
of using it in the development of edge AI. In this 
paper, we overcome these shortcomings through 
the design, benchmarking of two RTL based 
neuromorphic accelerator, study trade offs in 
energy, area, and performance at edge-relevant 
scenario, and propose a path towards a scalable 
design roadmap of low power neuromorphic 
integration in future. 

3. Neuromorphic Architecture Design 
Neuromorphic systems apply the structural and 
functional dynamics of biological neural systems, 
to achieve sparse, asynchronous, energy-efficient 
computation. The architecture to be proposed rests 
on the achievement of integrating: Leaky Integrate-
and-Fire ( LIF ) neurons and Spike-Timing 
Dependent Plasticity ( STDP - based ) synaptic 
learning that are modeled at the Register Transfer 
Level ( RTL ) in FPGA implementation as well as 
ASIC aimed. 
 
3.1 LIF Neuron Model 
LIF neurons imitate the temporal integration 
process of multiple input spikes and it is 
characteristic of LIF to behave dynamically on 
thresholding levels. At some point when the 
summed up membrane potential reaches a 
threshold, the neuron fires and is reset just like the 
biological firing behavior. Refractory periods and 
configurable decay constants are supported with 
the model suitable to be used in low-complexity 
hardware designs. FPGA update logic is fixed-point 
arithmetic with clock-synched updates with each 
neuron. 
 
3.2 STDP Synapse Design 
STDP Synapses Bio-realistic synaptic learning 
Hebbian theory of learning is a process of changing 
the strength of connections (synaptic weights) 
between neurons as a result of the time 
relationship between a pre-synaptic action 
potential and a post-synaptic one. In hardware, as 
implemented by Hess, STDP is implemented with a 
looked up table and event-logging registers 
recording spike timestamps and adjusting the 
weight accordingly. This employs local learning 
without centralised oversight and is a primitve 
technology for localised on-chip intelligence in 
particular edge devices. 
 
3.3 Event-Driven Computation Pipeline 
The architecture offered has an event-based 
calculation pipeline, in which a series of 
spikesrather than a shared clockinvigorate 
computation. The redundant switching can be 
minimized, and the energy consumption is also 
increased by ‘turning on/off neuronal modules 
only when an input event requires their action, 
under this paradigm. Spike-event routers Spike-
event routers are dynamically programmed to 
support asynchronous communication and high-
degree of scalability across neuromorphic cores in 
the sparse signal propagation between LIF neurons 
and STDP synapses. To guarantee deterministic 
system performance in the consideration of real-
time constraints, the system combines event 
queues and handshake protocols with 
asynchronous buffers to achieve low-latency 
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communication and minimal idle power 
consumption. All the data flow through spike 
encoding, synaptic adaptation, and decoding of the 
output is shown in Figure 1, which offers a visual 
impression of how the neuromorphic pipeline 
works in real-time and at low energy consumption. 
In real-world edge AI application scenarios, where 
the edge application is a keyword engine 

embedded into a smart audio assistant, or a 
gesture engine within an augmented reality (AR) 
wearable, the neuromorphic core is consuming 
spike-encoded sensor data as needed. It is an 
event-driven behavior that enables the system to 
experience a low-power idle state, computing only 
when the conditions warrant it, an important trait 
in battery-powered edge devices. 

 

 
Figure 1. Event-Driven Neuromorphic Architecture Pipeline for Edge AI 

 
This figure shows the whole pipeline of a 
neuromorphic architecture designed to process 
energy conscious edge tasks. It contains input 
spike encoding, LIF neuron, STDP based synaptic 
adaptation mechanism of the input, event driven 
routing, and output decoding mechanism. Its 
asynchronous flow allows sparse computation 
with minimum energy consumption, and real- time 
responsiveness 
 
3.4 CMOS vs. Memristive Implementations 
Two paradigm of hardware are visited: 
CMOS-Based Implementation: This was created by 
a regular digital logic on FPGAs and it provides 
reconfigurability, process maturity and RTL 
modularity. Its energy footprint is however larger 
as the scale of the network grows because of 
switching and memory overhead. 
Memristor-Based Implementation: This enjoys in-
memory computation and non-volatile storage of 
computational weight, i.e. use non-volatile memory 
elements. Memristors provide ultra-dense 
integration, and low standby power, suitable to 
high-density SNNs. Variability, endurance limits 
and premature fabrication are limitations to 
deployment, though. 
Dual-path exploration allows comparing energy 
efficiency, learning adaptability, and hardware 
scalability and driving ideal hardware solutions to 
current edge AI deployment scenarios. 
 
 

4. Implementation Methodology 
In order to assess the feasibility of the proposed 
neuromorphic hardware architecture, a full 
development pipeline was used, including the RTL 
design stage, hardware prototype development on 
FPGA, and synthesis targeting the ASIC and 
validation of the energy and area performance. 
 
4.1 RTL Design of Neuromorphic Cores 
The neuromorphic processing cores were written 
in Verilog HDL and featured important modules 
(e.g. leaky integrate-and-fire (LIF) neurons, spike-
timing-dependent plasticity (STDP) synapses, and 
event-driven spike router). Multiple network 
parameters such as the depth of the network, 
synaptic density and various spike routing 
schemes were made parameterizable to enable 
configuration and scaling. Effort was particularly 
put on minimizing switching activity in datapath 
and pipelining the synapse-neuron interface to 
minimize latency. 
 
4.2 FPGA Deployment on Xilinx ZCU102 
The architecture was synthesized and 
implemented on Xilinx ZCU102 that is based on 
Zynq UltraScale+ MPSoC with its integrated ARM 
cores and programmable logic. All spike processing 
and learning tasks were performed using a 
programmable logic, whereas the data I/O and 
experiment control was done using a lightweight 
control unit. The hardware was clocked at 100 
MHz and it had vast post-place-and-route 
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simulations to confirm functionality as well as 
timing closure. The consumption of power was 
determined through the Xilinx Power Estimator 
(XPE), in addition to the on-board INA226 sensors. 
The metadata in the configuration space has been 

discussed in Figure 2, Hardware Mapping of 
Neuromorphic Architecture on Xilinx ZCU102 
FPGA, which represents the instantiation of the 
blocks of the core LIF neurons, STDP synapses and 
the event coding and routing logic in hardware. 

 

 
Figure 2. Hardware Mapping of Neuromorphic Architecture on Xilinx ZCU102 FPGA 

 
This figure shows the hardware implementation of 
the suggested neuromorphic project on the Xilinx 
ZCU102 system. It demonstrates the distribution of 
LIF neurons, STDP synapses, event router, control 
logic, and spike encoding blocks to the 
programmable logic fabric, and interfaced to ARM 
Cortex cores used to control workload execution 
and manage I/O. 
 
4.3 ASIC Mapping and Simulation 
To assess more critically, the design was taped out 
to a 65nm standard-cell library in a design 
compilation flow which involved Synopsys Design 
Compiler. It involved standard-cell synthesis, post-
layout area computations and real-switching 
activity power analysis. The comparison was done 
between traditional MAC-based AI accelerators to 
estimate energy-per-inference, timing 
compatibility, and gate-level resource 
consumption. The resulting model of ASIC has 
retained the real time inference capability and also 
shown energy benefits due to the sparsity of spikes 
based computation as inspired by biology. 
 
4.4 Benchmark Workloads 
Three examples of representative, low-power 
workloads in the context of practical AI are 
considered, serving as an edge workload on which 
architecture was assessed: 
• MNIST (digit recognition): The MNIST dataset 

was operated on rate-encoded spike 
representations, and simulates scenarios of 
handwritten entry of digits in embedded 
devices, e.g. smart badges, logistics scanners, or 
portable terminals in industrial and healthcare 
environments. 

• N-MNIST (neuromorphic MNIST): The event-
based (recorded using Dynamic Vision Sensors 
(DVS)) models an asynchronous visual 
perception in time-critical applications like 
autonomous drones, AR/VR wearable gadgets, 
and smart surveillance cameras. 

• Keyword Spotting (KWS): It is based on MFCC-
transfomred audio features into spatio-
temporal spike trains, simulating on-device 
wake-word detection and low-power voice 
interaction in applications, including smart 
speakers, wearable health devices, and voice-
enabled appliances: 

On the ARM Cortex cores embedded in the Zynq 
MPSoC the spike encoding modules were 
implemented, emulating the preprocessing chain 
at the firmware level, common in edge platforms. 
The modules converted inbound sensory signals 
into asynchronous streams of events that in turn 
became input to the neuromorphic fabric to 
perform inference with very low latency in real-
time. 
All the tasks measured performance using core 
edge-AI metrics: inference latency, energy per 
inference, and classification accuracy. This is a 
comprehensive end-to-endsystem comparative 
benchmarking metric that can provide pragmatic 
narrations of how the architecture scales to real-
life deployment conditions including energy 
budgets, processing delay, and compute budget 
constraints, that are common in current edge 
intelligence systems. 
 
5. Evaluation Metrics for Edge-AI Hardware 
To evaluate hardware architectures for edge AI and 
neuromorphic systems, the following metrics are 
crucial: 



     55 Electronics, Communications, and Computing Summit | Apr - Jun 2024 

 

O.J.M. Smith et al / Design and Evaluation of Neuromorphic Hardware Architectures for Low-Power Edge 
AI Applications 

 

 
 

5.1. Power Consumption 
 Dynamic Power: Power used during logic 

switching. 
 Static Power: Leakage power when the circuit 

is idle. 
Measured via tools like Xilinx XPower or 
onboard sensors (e.g., INA226). 
Relevance: Impacts thermal design and 
battery life. 

 
5.2. Energy per Inference (EPI) 
 Calculated as: 

EPI=Power × Inference Latency 
Relevance: Indicates energy efficiency, essential for 
always-on, low-power applications. 
 
5.3. Area Utilization 
 FPGA: LUTs, Flip-Flops (FFs), and BRAM 

usage. 
 ASIC: Gate equivalents or silicon area (mm²). 

Relevance: Smaller area reduces cost and 
allows higher integration density. 

 
5.4. Inference Latency & Accuracy 
 Latency: Time per inference (ms). 

 Accuracy: Model performance, e.g., Top-
1/Top-5 scores. 
Relevance: Critical for real-time applications 
and task reliability. 

These metrics collectively evaluate performance, 
energy efficiency, and deployability. Optimizing all 
ensures suitability for edge, embedded, and IoT 
environments. 
 
5.5 Edge System Integration Model 
The suggested neuromorphic system may be 
implanted into a multi-level edge stack, frontend to 
sensors through SPI / I2C interfaces to real-time 
capture of data and to microcontrollers or SoCs to 
control the task orchestration. It is lightweight and 
able to even run without external DRAM, and could 
be customized into its own ASIC or into an 
embedded system using FPGAs to be used in a 
wearable, drone, or intelligent monitoring point 
device. Figure X: Edge Deployment Model of 
Neuromorphic System shows the systemwide 
integration and the data flow at the various 
hardware levels, displaying the modular 
interactions amid sensing, computation and 
control elements within an edge AI system. 

 

 
Figure 3. Edge Deployment Model of Neuromorphic System 

 
Illustration of a hierarchical edge-AI stack showing 
integration of sensors, neuromorphic core, 
microcontroller/SoC, and ASIC/FPGA. 
Communication via SPI/I2C enables real-time, low-
power edge inference across embedded platforms. 
 
6. RESULTS AND DISCUSSION 
The performance of the suggested neuromorphic 
hardware architecture was seriously tested in 
terms of several aspects. Results are shown 
through quantitative benchmarking, comparative 
visualizations, and through an interpretive analysis 

of the strength of the project as well as design 
trade-offs. 
 
6.1 Benchmarking and Comparative Evaluation 
Broad-based benchmarking taken with real-world 
applications like MNIST, N-MNIST and Keyword 
Spotting was involved on Xilinx ZCU102 and 
emulated on ASIC. The findings are reported Table 
1, which compares the leaders in key performance 
indicators in terms of latency, energy-per-
inference, and area utilization with respect to 
traditional MAC-based accelerators (e.g., ResNet-
18 on FPGA, ARM-based DSP). 
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Table 1. Comparative Benchmarking of Proposed Neuromorphic Architecture vs. MAC-Based ResNet-18 
Accelerator 

Metric Proposed Neuromorphic 
Design 

MAC-Based Baseline 
(ResNet-18) 

Improvement 

Inference Latency 
(ms) 

5.6 19.3 ~71% ↓ 

Energy per Inference 
(µJ) 

28.7 112.4 ~74% ↓ 

LUTs / FFs / BRAM 
(FPGA) 

11.5K / 8.2K / 24 BRAM 42.8K / 33.1K / 56 BRAM ~60% ↓ 

Accuracy (%) 93.4 94.2 ~0.8% ↓ 
 
6.2 Scalability and Design Constraints 
The scalability of the proposed architecture was 
measured up to various numbers of neuromorphic 
cores. Scaling of power and area is efficient 
between 2 and 14 cores as illustrated below in 

Figure 4. The linear growth in power can be 
attributed to the extra active processing units, 
whereas area overhead is sub-linear, which has 
been facilitated by common interconnects and 
even-out memory reuse. 

 

 
Figure 4. Scalability Analysis of Neuromorphic Architecture 

 
The power and area overheads increase as a factor 
of the core count (2 to 14). The findings indicate 
almost linear scaling in power consumption and 
sub-linear area utilization growth with evidence 
that there is feasibility in the parallelism approach 
and integration of edge deployments. 
Constraints of design are: 
Noise Tolerance: Moderate and high Gaussian noise 
only affect accuracy by at most ~1.4% and ~4.6%, 
respectively, however illustrating that the model 
tends to be sensitive to spiking threshold variation. 
Do derive more variance in energy estimation 
reflecting PVT (Process-Voltage-Temperature) in 
ASIC simulation against analog-to-digital 
conversion stages of transition. 
Learning Stability: Learning with unsupervised 
STDP ( Spike-Timing-Dependent Plasticity ) on-
chip exhibits an initial instability of convergence 
and would need control in the learning rate. 
 
6.3 Interpretation and Relevance 
The findings provide the support of the energy 
effectiveness and space efficiency of a proposed 
neuromorphic approach compared to MAC-based 

methods. Although there are slight accuracy trade-
offs, the trade-offs are well worth the potential 
savings in energy consumption and latency 
required in real-time workloads where the design 
fits edge AI application well in sensor fusion, 
anomaly detection, and keyword spotting 
applications. 
Our design achieves energy efficiency (compared 
to previous works e.g., [Smith et al., 2021]; [Lee et 
al., 2023]) which is 2.5x greater than with a 
reduced latency, and thus a good candidate in 
applications with battery-constrained and latency-
sensitive operation. 
 
7. CONCLUSION  
This paper demonstrates a low-latency, power-
efficient neuromorphic hardware that is ideal to 
deploy at edges of AI. Promising event-driven MAC-
less computation in combination with modular 
spiking cores and hardware-friendly learning 
algorithms, the proposed design outperforms the 
use of traditional MAC-based accelerators in terms 
of energy-per-inference and area consumption. 
The architecture is synthesized on Xilinx ZCU102 
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and simulated to deploy on-chip in ASIC 
implementation, the architecture achieves real-
time inference with minimum resource overhead 
that can be implemented in field or energy-limited 
portable applications. 
Key contributions include: 
 A scalable, event-driven pipeline for sparse 

spike processing. 
 FPGA implementation with detailed resource 

and energy benchmarks. 
 Comparative analysis highlighting efficiency 

gains over MAC-centric designs. 
 Evaluation of robustness under noise and 

design constraints. 
Looking ahead, post-silicon validation is a critical 
next step, including: 
 Physical prototyping using standard-cell ASIC 

flows. 
 On-chip calibration for spike timing and 

learning convergence. 
 Validation under thermal and voltage 

variations. 
 
7.1. Future Work 
 3D-stacked memory integration to minimize 

latency in spike buffering and synaptic access. 
 Hybrid analog-digital architectures to further 

reduce energy consumption via in-memory 
computation. 

 On-chip learning optimizations, including 
adaptive STDP and bio-inspired 
reinforcement schemes for online learning. 

 Future work will focus on end-to-end 
deployment in real edge devices such as 
smart audio assistants and biomedical 
monitors, integrating the neuromorphic core 
with lightweight embedded firmware and 3D-
stacked memory for full-system validation 
under real-world conditions 

Overall, this work lays the foundation for energy-
efficient neuromorphic platforms and provides a 
roadmap for their evolution into next-generation 
embedded intelligence systems. 
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