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The paper focuses on designing and testing neuromorphic systems in
hardware, and in particular those designed to perform edge Al systems
with low power and real-time performance in mind. The main aim is to
design Event-driven computing systems that emulate neural processes
of nature to obtain energy-efficient inference at the edge. A CMOS-based
and memristor-based paradigm of spiking neural network (SNN)
accelerators are discussed. Leaky integrate-and-fire (LIF) neurons and
leaky integrate-and-fire (LIF) neurons as well as synaptic integration
instances are mapped to FPGA platforms as modular RTL
implementations ready to be exploited and benchmarked in this FPGA-
based prototyping workflow. Edge-relevant tasks optimal to the
proposed neuromorphic cores include handwritten digit classification
and dynamic vision-based gesture recognition and voice command
detection. Power-performance comparing with the traditional multiply-
accumulate (MAC) based Al accelerators is discussed. There are up to 70
percent dynamic power reduction and a 3x factor improvement in
energy-per-inference has been observed, reflecting the architectural
compatibility of SNNs to constrained edge environments. More so, this
paper reviews trade-offs of on-chip learning flexibility, inversion latency,
and hardware extensiveness. A deployment model at system level is
proposed to provide an example of integration in the real world into
edge Al stacks with emphasis on the modularity of interaction between
neuromorphic processing components and embedded components. The
results confirm that neuromorphic architectures bring very strong
benefits to edge applications and especially in latency-, energy-, and
area-sensitive applications. The scale of such a system, as well as the
related design considerations, is an additional topic of interest raised in
the work as it provides insight into future directions of ASIC design and
adaption to hybrid edge-Al pipelines.

1. INTRODUCTION

human brain. The fundamental computational

The high rate of edge computing devices coming
into various fields like smart wearables,
autonomous sensors and IoT systems has
increased the necessity of low latency, energy
efficient, artificial intelligence (AI) on the edge.
Traditional Al accelerators that are often digital
von Neumann systems are highly dependent on
dense multiply-accumulate (MAC) functions that
are power-hungry and not performant to tighter
energy and low-latency demands at the edge. They
are memory bottlenecks too because computing
and storing have been separated and this increases
the amount of energy to move the data and
restricts real time responsiveness. Neuromorphic
computing is an alternative inspired by biology,
whereby computation is event-based whereby
each computation tightly interacts with memory,
emulating the structure and dynamics of the

model used in neuromorphic systems is Spiking
Neural Networks (SNNs), and they compute
information using sparse, spike-based signaling,
which allow truly ultra-low power utilize, and they
are inherently asynchronous. Existing successful
prototyping of hardware (like the Loihi (Intel,
2019) or TrueNorth (Merolla et al., 2014) systems)
have proven attractive energy characteristics, yet
are too advanced (or domain-specific) to scale to
real-world edge Al applications (Davies et al,
2018). Nevertheless, existing neuromorphic
hardware is not modular, not reconfigurable and
has not been benchmarked under realistic edge
workloads. In addition, architectural complexity,
power efficiency, and inference accuracy trade-offs
in constrained settings are under-studied.

Contributions that fill these gaps are characterizing
and evaluating 2 RTL-level implementations of
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neuromorphic hardware, memristor- and CMOS-
based accelerators of SNNs focused on edge Al
applications, designed in this paper. Our evaluation
on the use of FPGA prototyping and workload
simulation on power, latency and scalability leads
to the provision of a practical roadmap on the
future ASIC integration into edge Al applications.

The described neuromorphic hardware is
especially well-suited to real-time edge Al
applications like wearable health devices,

autonomous environmental monitoring, localable
speech or gesture recognition systems, and so on,
where low power, on-chip learning, and very-low
latency lifetime requirements are paramount.

2. RELATED WORK

A number of neuromorphic hardware systems have
more recently been developed to simulate brain-
like computation using spiking neural networks
(SNNs) and event-driven systems. Markedly, Intel
Loihi (Davies et al, 2018) introduces
programmable SNN brains on a chip with on-chip
learning, providing energy-efficient real-time
inference to execute a robotic and cognitive
processing. A massively parallel neurosynaptic
chip with more than one million neurons and 256
million synapses was created by IBM TrueNorth
(Merolla et al, 2014) that is extremely energy-
efficlent at pattern recognition. Equally,
BrainScaleS (Schemmel et al, 2020) applies the
analog VLSI circuit to the SNN emulation at high-
speed rates and hybrid learning-experiments,
especially in neuroscience studies. These platforms
are mostly architected in centralized or lab scale
settings though they have significant architectural
innovations and do not scale well to the edge
setting. They can be code-dependent, chip-sized,
non-industry-standard low-power interface and
customization options. Moreover, they are complex
and therefore hard to integrate into resource-
constrained systems at the edges especially when
real-time guarantees, power-restricted budgets,
task-specific  reconfigurabilities are needed.
Furthermore, there are a few reports of
comparative architectural assessment in realistic
edge workloads. There is little systematic
comparison of power/latency/inference accuracy
of SNN designs over microcontroller-like or FPGA-
level hardware. The absence of common metrics
and publicly available architectural foundations in
neuromorphic computing decreases the feasibility
of using it in the development of edge Al In this
paper, we overcome these shortcomings through
the design, benchmarking of two RTL based
neuromorphic accelerator, study trade offs in
energy, area, and performance at edge-relevant
scenario, and propose a path towards a scalable
design roadmap of low power neuromorphic
integration in future.

3. Neuromorphic Architecture Design
Neuromorphic systems apply the structural and
functional dynamics of biological neural systems,
to achieve sparse, asynchronous, energy-efficient
computation. The architecture to be proposed rests
on the achievement of integrating: Leaky Integrate-
and-Fire ( LIF ) neurons and Spike-Timing
Dependent Plasticity ( STDP - based ) synaptic
learning that are modeled at the Register Transfer
Level ( RTL ) in FPGA implementation as well as
ASIC aimed.

3.1 LIF Neuron Model

LIF neurons imitate the temporal integration
process of multiple input spikes and it is
characteristic of LIF to behave dynamically on
thresholding levels. At some point when the
summed up membrane potential reaches a
threshold, the neuron fires and is reset just like the
biological firing behavior. Refractory periods and
configurable decay constants are supported with
the model suitable to be used in low-complexity
hardware designs. FPGA update logic is fixed-point
arithmetic with clock-synched updates with each
neuron.

3.2 STDP Synapse Design

STDP Synapses Bio-realistic synaptic learning
Hebbian theory of learning is a process of changing
the strength of connections (synaptic weights)
between neurons as a result of the time
relationship between a pre-synaptic action
potential and a post-synaptic one. In hardware, as
implemented by Hess, STDP is implemented with a
looked up table and event-logging registers
recording spike timestamps and adjusting the
weight accordingly. This employs local learning
without centralised oversight and is a primitve
technology for localised on-chip intelligence in
particular edge devices.

3.3 Event-Driven Computation Pipeline

The architecture offered has an event-based
calculation pipeline, in which a series of
spikesrather than a shared clockinvigorate
computation. The redundant switching can be
minimized, and the energy consumption is also
increased by ‘turning on/off neuronal modules
only when an input event requires their action,
under this paradigm. Spike-event routers Spike-
event routers are dynamically programmed to
support asynchronous communication and high-
degree of scalability across neuromorphic cores in
the sparse signal propagation between LIF neurons
and STDP synapses. To guarantee deterministic
system performance in the consideration of real-
time constraints, the system combines event
queues and  handshake  protocols  with
asynchronous buffers to achieve low-latency

52 Electronics, Communications, and Computing Summit | Apr - Jun 2024



0.J.M. Smith et al / Design and Evaluation of Neuromorphic Hardware Architectures for Low-Power Edge
Al Applications

communication and minimal idle power
consumption. All the data flow through spike
encoding, synaptic adaptation, and decoding of the
output is shown in Figure 1, which offers a visual
impression of how the neuromorphic pipeline
works in real-time and at low energy consumption.
In real-world edge Al application scenarios, where
the edge application is a keyword engine

embedded into a smart audio assistant, or a
gesture engine within an augmented reality (AR)
wearable, the neuromorphic core is consuming
spike-encoded sensor data as needed. It is an
event-driven behavior that enables the system to
experience a low-power idle state, computing only
when the conditions warrant it, an important trait
in battery-powered edge devices.

4 1\ 4 N\
Neurons Synapses
Leaky Weight
Integrate-Fire > Storage
Input Event
Input routing Output
Events I — Spikes
N\
Learnin Spike-
Ea ; g Timing-Dependent
nginé Plasticity

Figure 1. Event-Driven Neuromorphic Architecture Pipeline for Edge Al

This figure shows the whole pipeline of a
neuromorphic architecture designed to process
energy conscious edge tasks. It contains input
spike encoding, LIF neuron, STDP based synaptic
adaptation mechanism of the input, event driven
routing, and output decoding mechanism. Its
asynchronous flow allows sparse computation
with minimum energy consumption, and real- time
responsiveness

3.4 CMOS vs. Memristive Implementations

Two paradigm of hardware are visited:
CMOS-Based Implementation: This was created by
a regular digital logic on FPGAs and it provides
reconfigurability, process maturity and RTL
modularity. Its energy footprint is however larger
as the scale of the network grows because of
switching and memory overhead.

Memristor-Based Implementation: This enjoys in-
memory computation and non-volatile storage of
computational weight, i.e. use non-volatile memory
elements. Memristors  provide ultra-dense
integration, and low standby power, suitable to
high-density SNNs. Variability, endurance limits
and premature fabrication are limitations to
deployment, though.

Dual-path exploration allows comparing energy
efficiency, learning adaptability, and hardware
scalability and driving ideal hardware solutions to
current edge Al deployment scenarios.
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4. Implementation Methodology

In order to assess the feasibility of the proposed
neuromorphic hardware architecture, a full
development pipeline was used, including the RTL
design stage, hardware prototype development on
FPGA, and synthesis targeting the ASIC and
validation of the energy and area performance.

4.1 RTL Design of Neuromorphic Cores

The neuromorphic processing cores were written
in Verilog HDL and featured important modules
(e.g. leaky integrate-and-fire (LIF) neurons, spike-
timing-dependent plasticity (STDP) synapses, and
event-driven spike router). Multiple network
parameters such as the depth of the network,
synaptic density and various spike routing
schemes were made parameterizable to enable
configuration and scaling. Effort was particularly
put on minimizing switching activity in datapath
and pipelining the synapse-neuron interface to
minimize latency.

4.2 FPGA Deployment on Xilinx ZCU102

The  architecture @ was  synthesized and
implemented on Xilinx ZCU102 that is based on
Zynq UltraScale+ MPSoC with its integrated ARM
cores and programmable logic. All spike processing
and learning tasks were performed using a
programmable logic, whereas the data I/0 and
experiment control was done using a lightweight
control unit. The hardware was clocked at 100
MHz and it had vast post-place-and-route
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simulations to confirm functionality as well as
timing closure. The consumption of power was
determined through the Xilinx Power Estimator
(XPE), in addition to the on-board INA226 sensors.
The metadata in the configuration space has been

discussed in Figure 2, Hardware Mapping of
Neuromorphic Architecture on Xilinx ZCU102
FPGA, which represents the instantiation of the
blocks of the core LIF neurons, STDP synapses and
the event coding and routing logic in hardware.
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Figure 2. Hardware Mapping of Neuromorphic Architecture on Xilinx ZCU102 FPGA

This figure shows the hardware implementation of
the suggested neuromorphic project on the Xilinx
ZCU102 system. It demonstrates the distribution of
LIF neurons, STDP synapses, event router, control
logic, and spike encoding blocks to the
programmable logic fabric, and interfaced to ARM
Cortex cores used to control workload execution
and manage /0.

4.3 ASIC Mapping and Simulation

To assess more critically, the design was taped out
to a 65nm standard-cell library in a design
compilation flow which involved Synopsys Design
Compiler. It involved standard-cell synthesis, post-
layout area computations and real-switching
activity power analysis. The comparison was done
between traditional MAC-based Al accelerators to
estimate energy-per-inference, timing
compatibility, and gate-level resource
consumption. The resulting model of ASIC has
retained the real time inference capability and also
shown energy benefits due to the sparsity of spikes
based computation as inspired by biology.

4.4 Benchmark Workloads

Three examples of representative, low-power

workloads in the context of practical Al are

considered, serving as an edge workload on which
architecture was assessed:

e MNIST (digit recognition): The MNIST dataset
was operated on rate-encoded spike
representations, and simulates scenarios of
handwritten entry of digits in embedded
devices, e.g. smart badges, logistics scanners, or
portable terminals in industrial and healthcare
environments.

54

¢ N-MNIST (neuromorphic MNIST): The event-
based (recorded using Dynamic Vision Sensors
(DVS)) models an asynchronous visual
perception in time-critical applications like
autonomous drones, AR/VR wearable gadgets,
and smart surveillance cameras.

* Keyword Spotting (KWS): It is based on MFCC-
transfomred audio features into spatio-
temporal spike trains, simulating on-device
wake-word detection and low-power voice
interaction in applications, including smart
speakers, wearable health devices, and voice-
enabled appliances:

On the ARM Cortex cores embedded in the Zynq
MPSoC the spike encoding modules were
implemented, emulating the preprocessing chain
at the firmware level, common in edge platforms.
The modules converted inbound sensory signals
into asynchronous streams of events that in turn
became input to the neuromorphic fabric to
perform inference with very low latency in real-
time.
All the tasks measured performance using core
edge-Al metrics: inference latency, energy per
inference, and classification accuracy. This is a
comprehensive end-to-endsystem comparative
benchmarking metric that can provide pragmatic
narrations of how the architecture scales to real-
life deployment conditions including energy
budgets, processing delay, and compute budget
constraints, that are common in current edge
intelligence systems.

5. Evaluation Metrics for Edge-Al Hardware

To evaluate hardware architectures for edge Al and
neuromorphic systems, the following metrics are
crucial:
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5.1. Power Consumption

e Dynamic Power: Power used during logic
switching.

e Static Power: Leakage power when the circuit
is idle.
Measured via tools like Xilinx XPower or
onboard sensors (e.g., INA226).
Relevance: Impacts thermal design and
battery life.

5.2. Energy per Inference (EPI)

e (Calculated as:

EPI=Power x Inference Latency

Relevance: Indicates energy efficiency, essential for
always-on, low-power applications.

5.3. Area Utilization
e FPGA: LUTs, Flip-Flops (FFs), and BRAM
usage.
e ASIC: Gate equivalents or silicon area (mm?).
Relevance: Smaller area reduces cost and
allows higher integration density.

5.4. Inference Latency & Accuracy
e Latency: Time per inference (ms).

e Accuracy: Model performance, e.g., Top-
1/Top-5 scores.
Relevance: Critical for real-time applications
and task reliability.
These metrics collectively evaluate performance,
energy efficiency, and deployability. Optimizing all
ensures suitability for edge, embedded, and IoT
environments.

5.5 Edge System Integration Model

The suggested neuromorphic system may be
implanted into a multi-level edge stack, frontend to
sensors through SPI / 12C interfaces to real-time
capture of data and to microcontrollers or SoCs to
control the task orchestration. It is lightweight and
able to even run without external DRAM, and could
be customized into its own ASIC or into an
embedded system using FPGAs to be used in a
wearable, drone, or intelligent monitoring point
device. Figure X: Edge Deployment Model of
Neuromorphic System shows the systemwide
integration and the data flow at the various
hardware levels, displaying the modular
interactions amid sensing, computation and
control elements within an edge Al system.

Sensors —

Neuromorphic
Core

SPI1/12C

Microcontroller ||
| SoC

ASIC / FPGA

Figure 3. Edge Deployment Model of Neuromorphic System

[llustration of a hierarchical edge-Al stack showing
integration of sensors, neuromorphic core,
microcontroller/SoC, and ASIC/FPGA.
Communication via SPI/I2C enables real-time, low-
power edge inference across embedded platforms.

6. RESULTS AND DISCUSSION

The performance of the suggested neuromorphic
hardware architecture was seriously tested in
terms of several aspects. Results are shown
through quantitative benchmarking, comparative
visualizations, and through an interpretive analysis
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of the strength of the project as well as design
trade-offs.

6.1 Benchmarking and Comparative Evaluation
Broad-based benchmarking taken with real-world
applications like MNIST, N-MNIST and Keyword
Spotting was involved on Xilinx ZCU102 and
emulated on ASIC. The findings are reported Table
1, which compares the leaders in key performance
indicators in terms of latency, energy-per-
inference, and area utilization with respect to
traditional MAC-based accelerators (e.g., ResNet-
18 on FPGA, ARM-based DSP).
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Table 1. Comparative Benchmarking of Proposed Neuromorphic Architecture vs. MAC-Based ResNet-18
Accelerator
Metric Proposed Neuromorphic | MAC-Based Baseline | Improvement
Design (ResNet-18)
Inference Latency | 5.6 19.3 ~71% !
(ms)
Energy per Inference | 28.7 112.4 ~74% |
()
LUTs / FFs / BRAM | 11.5K / 8.2K / 24 BRAM 42.8K/33.1K/56 BRAM | ~60% !
(FPGA)
Accuracy (%) 93.4 94.2 ~0.8% !

6.2 Scalability and Design Constraints

The scalability of the proposed architecture was
measured up to various numbers of neuromorphic
cores. Scaling of power and area is efficient
between 2 and 14 cores as illustrated below in

Figure 4. The linear growth in power can be
attributed to the extra active processing units,
whereas area overhead is sub-linear, which has
been facilitated by common interconnects and
even-out memory reuse.

—&— Power
— Area

2 4 6

8 10 12

Figure 4. Scalability Analysis of Neuromorphic Architecture

The power and area overheads increase as a factor
of the core count (2 to 14). The findings indicate
almost linear scaling in power consumption and
sub-linear area utilization growth with evidence
that there is feasibility in the parallelism approach
and integration of edge deployments.

Constraints of design are:

Noise Tolerance: Moderate and high Gaussian noise
only affect accuracy by at most ~1.4% and ~4.6%,
respectively, however illustrating that the model
tends to be sensitive to spiking threshold variation.
Do derive more variance in energy estimation
reflecting PVT (Process-Voltage-Temperature) in
ASIC  simulation  against  analog-to-digital
conversion stages of transition.

Learning Stability: Learning with unsupervised
STDP ( Spike-Timing-Dependent Plasticity ) on-
chip exhibits an initial instability of convergence
and would need control in the learning rate.

6.3 Interpretation and Relevance

The findings provide the support of the energy
effectiveness and space efficiency of a proposed
neuromorphic approach compared to MAC-based

methods. Although there are slight accuracy trade-
offs, the trade-offs are well worth the potential
savings in energy consumption and latency
required in real-time workloads where the design
fits edge Al application well in sensor fusion,
anomaly detection, and keyword spotting
applications.

Our design achieves energy efficiency (compared
to previous works e.g., [Smith et al., 2021]; [Lee et
al, 2023]) which is 2.5x greater than with a
reduced latency, and thus a good candidate in
applications with battery-constrained and latency-
sensitive operation.

7. CONCLUSION

This paper demonstrates a low-latency, power-
efficient neuromorphic hardware that is ideal to
deploy at edges of Al. Promising event-driven MAC-
less computation in combination with modular
spiking cores and hardware-friendly learning
algorithms, the proposed design outperforms the
use of traditional MAC-based accelerators in terms
of energy-per-inference and area consumption.
The architecture is synthesized on Xilinx ZCU102
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and

simulated to deploy on-chip in ASIC

implementation, the architecture achieves real-
time inference with minimum resource overhead
that can be implemented in field or energy-limited
portable applications.

Key contributions include:

A scalable, event-driven pipeline for sparse
spike processing.

FPGA implementation with detailed resource
and energy benchmarks.

Comparative analysis highlighting efficiency
gains over MAC-centric designs.

Evaluation of robustness under noise and
design constraints.

Looking ahead, post-silicon validation is a critical
next step, including:

Physical prototyping using standard-cell ASIC
flows.

On-chip calibration for spike timing and
learning convergence.
Validation under thermal
variations.

and voltage

7.1. Future Work

3D-stacked memory integration to minimize
latency in spike buffering and synaptic access.
Hybrid analog-digital architectures to further
reduce energy consumption via in-memory
computation.

On-chip learning optimizations, including
adaptive STDP and bio-inspired
reinforcement schemes for online learning.
Future work will focus on end-to-end
deployment in real edge devices such as
smart audio assistants and biomedical
monitors, integrating the neuromorphic core
with lightweight embedded firmware and 3D-
stacked memory for full-system validation
under real-world conditions

Overall, this work lays the foundation for energy-
efficient neuromorphic platforms and provides a
roadmap for their evolution into next-generation
embedded intelligence systems.
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