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 With the onset of ubiquitous computing and edge intelligence, there is a 
huge need to deploy high-performance artificial intelligence models on 
underpowered devices. Convolutional Neural Networks (CNNs) 
represent a revolutionary computer vision solution, but they may be 
very computationally demanding, thus unable to be directly deployed 
on edge devices like IoT nodes, mobile, and wearable electronics. In this 
study, there has been a compelling necessity of building light weight 
CNN models which could render real-time inference with low latency, 
memory and power consumption, without comprising the accuracy. The 
paper is a detailed comparison of the best modern efficient CNN 
frameworks, of which there are MobileNetV3, ShuffleNetV2, GhostNet, 
and EfficientNet-Lite, focusing on how they form their innovations to 
the structure, how they use fewer parameters, and how they suit the 
next generation of computing environments through deployment. A 
benchmark suite was put in place to evaluate these models on real-
world edge devices like Raspberry Pi 4, NVIDIA Jetson Nano, and ARM 
Cortex-M55 based on the following major metrics of performance: top-1 
accuracy, inference latency, power consumption, and thermal stability. 
To further promote the edge intelligence, we propose EdgeLite-CNN, 
which is a new kind of hybrid CNN model that combines attention-based 
channel pruning, depthwise separable convolutions, and quantization-
aware training, in order to radically decrease the computational load, 
whilst preserving large representational capacity. On experimental data 
of the CIFAR-10, EdgeLite-CNN is shown to score top-1 accuracy of 91.3 
percent with only 0.89 million parameters and an inference latency of 
9.2 milliseconds on Raspberry Pi 4, considerably lowering the power 
consumption than those of the base models. These results confirm the 
use of EdgeLite-CNN in real-time-intensive tasks, e.g., smart surveillance 
tracking, intelligent processing of autonomous sensors, device-level 
healthcare data analysis. The proposed framework adds to the emerging 
domain of energy-efficient deep learning, which provides usable 
perspective on deploying the nine mobile CNNs in the edge according to 
the constraints, thereby heralding the emergence of the next-generation 
embedded neural networks. 
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1. INTRODUCTION  
The sheer growth of the Internet of Things (IoT), 
smart mobile devices, and wearable technologies 
resulted in the exponential growth of 
methodologies of requesting the on-device 
intelligence, giving rise to the concept of edge 
computing. In contrast to the previous systems 
built on clouds, where all the processing and 
inference are performed on a centralized data 
center, edge computing brings the intelligence 
nearer to the origin of data collection. The 
approach opens the possibility of saving 
bandwidth, decreasing latency by a significant 
margin, and increasing data privacy, and adds real-
time responsiveness, which is critical in future 

mission-critical applications including autonomous 
vehicles, remote health monitoring, smart 
surveillance, and even industrial automation. 
Convolutional Neural Networks (CNNs) have 
become the foundation of the current computer 
vision revolution, having secured a cadre of 
success in the areas of image classification, object 
detection, and semantic segmentation among 
others. Nevertheless, these standard models of 
CNN ResNet, VGGNet and DenseNet are 
computationally heavy and heavy on memory 
despite the remarkable accuracy and 
representational capabilities. They are unfit to 
operate edge devices, which have limited 
hardware capabilities, limited battery lives, and 
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strict requirements of real-time processing, due to 
their numerous parameters, high floating-point 

operations per second (FLOPs), or relying on GPUs 
or high-performance CPU. 

 

 
Figure 1. Integration of CNNs with IoT, Smart Devices, Edge Computing, and Mission-Critical Applications 

in Edge AI Ecosystems 
 
In order to overcome this gap, a greater level of 
research attention has been paid to the 
development of lightweight CNN designs capable 
of retaining competitive accuracy levels but 
maximally diminishing model complexity, memory 
consumption and inference latency. Optimization 
techniques to CNNs to become applicable as edge 
computing include depthwise separable 
convolutions, group convolutions, neural 
architecture search (NAS), quantization and 
pruning. Such principles are represented by 
models such as MobileNet, ShuffleNet, GhostNet, 
and Efficient Net-Lite, which have shown to have 
encouraging performance during edge AI 
deployments. 
The paper systematically reviews the state-of-the-
art lightweight CNN architectures available, 
evaluates how these architectures perform in 
different edge hardware platforms and combines 
the best of chosen architectural solutions to 
propose a new lightweight CNN architecture, 
EdgeLite-CNN, designed to suit the needs of 
resource constrained systems. This research will 
advance the existing body of research on energy-
efficient deep learning at the edge because it 
combines structural efficiency with smart 
compression and quantization. 
 
2. LITERATURE REVIEW 
Within the scope of the most recent years, a part of 
the deep learning community has come to advance 
some light CNN constructions that will be used on 
the edge. The MobileNet family of models is one of 

the most striking with the MobileNetV1, V2 and V3 
models introducing depthwise separable 
convolutions, essentially splitting a standard 
convolution into depth-wise and point-wise 
operations in order to lower both the 
computational cost and the model number of 
parameters. MobileNetV3 in turn enhanced this 
paradigm with neural architecture search (NAS), 
squeeze-and-excitation (SE) blocks to handle 
adaptive feature recalibration and the hard-swish 
activation function to provide enhanced non-
linearity with low compute. Likewise, the 
ShuffleNet and its variations are aimed at 
minimizing the inference cost through grouped 
convolution and channel shuffle operations that 
allow parallel processing and said operations also 
allow diversity in representational features 
present across feature maps. The alternative, 
EfficientNet, uses a compound scaling strategy that 
enables the tradeoff of network depth, width, and 
resolution thus attaining state-of-the-art 
performance using fewer parameters. 
GhostNet provides a new view of such action by 
first creating the concept of ghost modules they 
are light operations simulating the operation 
behavior of heavier convolutions through cheap 
linear operations. In those ways more features can 
be generated at much simpler computation and 
memory requirements than other techniques, 
which is well-suited to being ultra-constrained, 
like wearable devices or even real-time embedded 
systems. Experimentally, through such 
architectures, it has been shown that a good 
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tradeoff between efficiency and accuracy is indeed 
possible, which in its turn is essential to support 
computer vision workloads in next-generation 
edge computing ecosystems. 
In combination with architectural advancements, a 
number of compression techniques have been 
utilized to further decrease the model size and 
bring inference speed. The pruning techniques 
prune away any redundant weight or dimension 
by indexing and dropping less important 
connections, which makes them smaller and faster 
with sparse models. Quantization changes floating-
point computations to a low-bit-width arithmetic 
(e.g., INT8), and greatly minimizes the amount of 
memory required and improves its run-time on 
edge accelerators. Besides, the idea of knowledge 
distillation allows transferring generalized 
knowledge early in a condensed form, where a 
small, effective teacher model trains a compact 
student network. Such compression approaches 
coupled with optimised architectures create the 
basis of real-time deployment of deep learning 
models in energy-limited environments. 
 
3. METHODOLOGY 
3.1 Benchmark Framework  
In order to objectively compare the actual 
feasibility of lightweight CNN architecture in edge 
computing scenarios, we develop a strict set of 

benchmark procedures that measure model 
performance through a variety of different 
dimensions: accuracy, latency, throughput, and 
power efficiency. The metrics are critical in 
measuring the trade-offs of the computational 
complexity and inference quality when applying 
the neural networks to the resource limited 
hardware platforms. The analysis is performed on 
the basis of the standard datasets and 
representative edge devices in order to make 
analytical results generalizable and practically 
relevant. 
It is assessed by three test sets involving image 
classification; Cifar-10, Cifar-100, and Tiny 
Imagenet. These datasets are graded in the sense 
that they offer greater and greater complexity and 
granularity through which the generalization 
capabilities of each of the models may be 
measured on a scale. The CIFAR-10 has 60,000 
images of 32x32 color images belonging to 10 
categories whereas the CIFAR-100 has 100 
categories with more detailed differences in the 
classification. The Tiny ImageNet is a small portion 
of the original ImageNet data which is downsized 
into 64x64 pixels with 200 object classes giving a 
more achievable problem in edge inference. The 
accuracy measure is calculated as top-1 
classification accuracy, percentage of the labels on 
the test set which are correctly determined. 

 

 
Figure 2. Benchmarking Framework for Lightweight CNNs across Edge Devices Using CIFAR and Tiny 

ImageNet Datasets 
 
The latency and throughput are evaluated at three 
edge hardware platforms: NVIDIA Jetson Nano, 
Raspberry Pi 4, and ARM Cortex-M55 by deploying 
each model thereon. They include edge computing 
platforms ranging between GPU-accelerated board 
and extremely low-power microcontrollers. 
Latency or a latent period is the amount of time it 
takes to make one inference pass (in milliseconds) 
whereas throughput is the number of inferences 

that can be made by the model per second. Such 
measurements are essential when the application 
has real-time requirements, like when using it in 
automated navigation or gesture tracking, where 
there is a potential of the system breaking down 
due to missing on an action. 
Depending on the target platform it is 
implemented using tools such as TI 
EnergyTrace++, on-board ADC-based current 
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monitors, and software energy estimators, to 
profile power. The analysis gives the power used 
in each inference operation (often given in 
millijoules or microjoules), so these numbers can 
be directly compared between different models. 
Power profiling is critical to battery operated 
devices since profiling is directly related to lifetime 
and thermal requirements of the device. We 

believe that by implementing this multi-
dimensional approach to benchmarking, our 
analysis will demonstrate the performance of 
every CNN model in a comprehensive way where 
these tests have been conducted under conditions 
that represent the realistic constraints and 
requirements of edge AI implementations in the 
next generation. 

 
Table 1. Performance Comparison of Lightweight CNN Models Across Datasets and Edge Devices Based 

on Accuracy, Latency, Throughput, and Energy Consumption 
Model Dataset Device Accuracy 

(%) 
Latency 
(ms) 

Throughput 
(FPS) 

Energy 
(mJ) 

MobileNetV3 CIFAR-10 Raspberry 
Pi 4 

90.1 13.4 74.6 22.7 

ShuffleNetV2 CIFAR-100 Jetson Nano 74.3 11.7 85.5 20.3 
GhostNet TinyImageNet Cortex-M55 67.5 10.5 92.1 18.6 
EdgeLite-
CNN 

CIFAR-10 Raspberry 
Pi 4 

91.3 9.2 108.7 15.4 

 
3.2 Proposed EdgeLite-CNN  
We have investigated the rapidly increasing need 
to run high accuracy, yet lightweight neural 
networks on power/compute-restrained edge 
devices, and have suggested EdgeLite-CNN, a 
lightweight convolutional neural network (CNN) 
architecture, explicitly optimised with respect to 
energy-efficient inference. The architecture thesis 
embedded in EdgeLite-CNN is to reshape 
architectural simplifications and sophisticated 
model compression method into a robust 
performance because of the problem with 
constrained hardware performance but without 
degradation of classification accuracy. The 
important modules helping to fuel efficiency and 
effectiveness of EdgeLite-CNN include the 
following: 
 
Attention-Based Pruning: 
Static heuristics such as magnitude to eliminate 
features can be based on traditional pruning 
strategies that remove weights or channels. By 
contrast, EdgeLite-CNN appears to feature ach 
channel prunning that is achieved through 
attention techniques in that the individual channel 
distinction is evaluated throughout training using 
a lightweight attention module. This has 
established a feature selection mechanism of 
learnable weights on feature maps and, therefore, 
allows the model to keep only useful 
discriminative features denying choices of 
redundant or non-representative features. 
Consequently, the model displays tremendous 
reduction of the parameters and multifold floating-
point operations yet preserving the capability to 
target high-value. 
 
Depthwise Separable Convolutions: 

Depthwise separable convolution is also a two step 
process that decomposes a standard convolution 
into a depthwise convolution (where channels of 
the inputs are treated separately) followed by 
another pointwise convolution (a merging of the 
outputs). This decomposition significantly 
simplifies computational complexity and the 
number of the parameters, in particular, at early 
and mid-stage layers of the network. This 
implementation by EdgeLite-CNN saves the 
multiply-accumulated operations (MACs) up to 90 
percent in comparison to standard convolutions, 
and maintains important spatial and feature 
hierarchies. 
 
Quantization-Aware Training (QAT): 
Quantization has been key towards model size 
reduction and faster inference on edge-mounted 
devices. In contrast to post-training quantization 
that usually leads to a decrease in accuracy, 
EdgeLite-CNN incorporates quantization-aware 
training (QAT), thus the model can represent the 
8-bit fixed- point arithmetic at the actual training. 
This helps the network to learn how to operate 
with less numerical precision early, so that 
performance falls less after deployment. QAT also 
allows hardware interoperability with processors 
that have INT8 acceleration capabilities, (e.g. ARM 
Cortex-M and Google Edge TPU), which can lead to 
even greater energy efficiency and real-time 
response of the model. 
Combining the three fundamental methods with 
attention-driven pruning to achieve selectivity, 
depthwise separable convolution to make 
maximum mathematical advantage (computational 
efficiency), and QAT to ensure flexible 
compression optimized to specific hardware, 
EdgeLite-CNN has a very high compactness of the 
model, size, and throughput. This qualifies it 
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perfectly to be used in devices that are inference-
based in setups like autonomous drones, wearable 
sensors, smart cameras, and other devices with 

limited resources but no allowances can be made 
to their performance. 

 

 
Figure 3. EdgeLite-CNN Architecture Overview 

 
3.3 Model Training Setup 
A consolidated and well-managed training pipeline 
was followed to have equal and well-spread 
judgment on all models. The approach to the 
training was aimed at benchmarking not only the 
baseline performance of the most prominent 
lightweight CNN models- MobileNetV3, 
ShuffleNetV2, GhostNet, EfficientNet-Lite but also 
the proposed EdgeLite-CNN baseline. Each of the 
models was either trained or fine-tuned based on 
the compatibility of on-demand data sets and their 
convergence characteristics on pretrain ImageNet 
weights if found. The whole training infrastructure 
was provided with PyTorch 2.0 and then the 
models were converted to quantization-ready 
models via TensorFlow Lite Converter and 
deployed to the edges. 
The models were trained using three conventional 
datasets commonly used in work in the field of 
image classification: CIFAR-10, CIFAR-100 and 
Tiny ImageNet. These datasets have been chosen 
to provide a steady increase of difficulty, starting 
with CIFAR-10, which has only 10 classes, going to 
Tiny ImageNet, which has 200 classes. All the input 
images were scaled to fit the architectural input 
dimension (32×32 or 64×64) and normalised by 
removing the mean and dividing the standard 
deviation of each of the RGB channels. Data 
augmentation methods were used to alleviate 
overfitting and enhance the generalization of the 
model: cropping (padded), horizontal flips, 
rotations, as well as jittering of the colors 
(brightness, contrast, and saturation). 
The training was done with the Adam optimizer 
which is both stable and converges fast in the 
situation of low resources with an initial learning 
rate of 0.001. Cosine annealing schedule was used 
to dynamically decrease the learning rate, to 
smooth the learning process and enable the model 

to approach a local optimum in a small step by step 
mode. The 128 batch size was chosen to consider 
the speed of convergence against memory 
limitation. The models were trained on 150 
epochs, and huggingface early stopping 
mechanism was used to stop the training after the 
training loss reaches a plateau 10 epochs, as a form 
of protection against overfitting and unnecessary 
wasted compute. 
Another novelty of the training of EdgeLite-CNN 
was the inclusion of Quantization-Aware Training 
(QAT). In the last 30 epochs QAT simulated 8-bit 
fix-point arithmetic during the forward and 
backward passes, which enables the model learn to 
execute within the constrained inference precision. 
This considerably minimized the loss of accuracy 
regarding conversion of the model to INT8 with 
TensorFlow Lite or ONNX. Simultaneously, 
attention-based channel pruningwas used on 
EdgeLite-CNN starting the 50th epoch. This 
dynamic method, in contrast to static pruning, 
made use of learnable attention masks to detect 
and zero-out less informative channels on the basis 
of gradient-driven saliency, so that the model 
could successively reduce its computational 
footprint without sacrificing richness of features. 
Training and validation were done on NVIDIA 
A100 GPUs with 80GB memory providing 
adequate headrooms towards large scale batch 
processing, gradient checkpoints, and memory-
consuming tasks (e.g., attention modules). These 
GPU-based evaluations pre-deployment were 
provided as a benchmark of ensuring accuracy as 
well as behavior on convergence of the models 
after which further tests on quantized and energy-
profiled inference upon these specific edge 
devices, Raspberry Pi 4, Jetson Nano, and ARM 
Cortex-M55 simulator, were carried out. Such a 
powerful training pipeline made sure that all 
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models, in which EdgeLite-CNN was no exception, 
were accurate and also ready to deploy under 

realistic edge constraints. 

 

 
Figure 4. Training and Deployment Workflow for EdgeLite-CNN and Baseline CNN Models 

 
3.4 Evaluation Protocols  
A powerful and platform-wise evaluation scheme 
was deployed to make sure that performance of 
the proposed EdgeLite-CNN and baseline models 
can be efficiently applied in practical deployment. 
Trained models were initially converted into 
models that can be run on edge-inference with the 
help of onnx or tensorflow lite converters. The 
formats allow deployment to a wide variety of 
hardware platforms; quantization and pruning 
gains obtained during training are maintained. The 
test was done on three archetypal edge platforms 
comprising a diversity of performance levels; 
NVIDIA Jetson Nano, which has arm-based CUDA-
capable GPUs; Raspberry Pi 4 (4GB), with a quad-
core ARM CPU and poor memory and optional NPU 
support and an ARM Cortex-M55 simulator, which 
supports the CMSIS-NN execution engine to 
execute low-power inferences. All of them were 
implemented to take advantage of hardware 
optimizations with a native acceleration library, 
Jetson with TensorRT, Pi with NPU offloading or 
TFLite interpreter, and Cortex-M with CMSIS-NN, 
respectively. 
A complete set of metrics was employed to assess 
model behavior in functional, latency and energy 
angles. To compare the correctness of inferences 
under quantized and pruned conditions the test 
split of the respective datasets (CIFAR-10, CIFAR-
100, and Tiny ImageNet) was used to assess Top-1 
Accuracy (%) line. Latency of inference (ms) was 
computed as the average execution time to 

perform a single forward pass, averaged across 1, 
000 trials so as to dampen out any runtime 
inconsistency. The precision power monitoring 
tools were used to measure energy usage per 
inference (mJ): INA219 sensors were connected to 
the power rails of Raspberry Pi and TI 
EnergyTrace++ was used to assess Cortex-M 
energy profiles. Another parameter, model size 
(MB), and number of parameters (in millions), was 
captured to determine memory size usage and 
device constraints. 
In observing fairness and consistency, the 
evaluations were conducted under the same 
software and thermal conditions. Background 
tasks were kept to an absolute minimum, 
CPU/GPU frequency governors would be locked so 
that no dynamic scaling would take place and 
thermal throttling should be off so that expected 
performance is deterministic. Each model was 
benchmarked with five independent tests and the 
outcome statistically averaged to limit outliers due 
to occasional operating system level interference 
and background daemons. This rigorous procedure 
will make sure that high performance figures by 
EdgeLite-CNN, in particular, a low inference time 
and energy efficiency, are not figments of 
paradigmatic settings and are valid stably across 
diverse settings of real-world deployment. These 
protocols determine the empirical validity of 
EdgeLite-CNN as the attractive architecture of 
next-generation edge AI applications. 
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Figure 5. Evaluation Pipeline for Edge-Aware Inference Using ONNX/TFLite across Heterogeneous 

Hardware Platforms 
 
4. RESULTS AND DISCUSSION 
Experimental findings reveal that the suggested 
EdgeLite-CNN model provides an extremely 
desirable trade-off between model size and 
accuracy and energy consumption, surpassing 
some of the state-of-the-art lightweight CNN 
architectures on all drawbacks. Comparing with 
CIFAR-10 dataset benchmark, EdgeLite-CNN 
reaches a top-1 accuracy of 91.3 percent, ranking 
higher than MobileNetV3 (90.1 percent), 
ShuffleNetV2 (89.4 percent), and GhostNet (88.9 
percent), and with a much smaller amount of 
parameters, the only 0.89 million, as opposed to 

1.1M to 1.5M in other models. This increase in 
accuracy, even though the number of parameters 
has been decreased, is evidence of the efficacy of 
attention-based channel pruning to preserve the 
most informatively relevant features, and the effect 
of quantization-aware training to preserve 
accuracy when INT8 inference is used. These 
findings confirm that use of well-designed 
architectural and compression solutions may be 
used to mitigate the constraints normally related 
to lightweight networks in terms of capacity of the 
model. 

 

 
Figure 6. Performance Comparison of Lightweight CNN Models — Accuracy, Inference Time, and Energy 

Consumption 
 
Regarding the implementation feasibility on a real-
time basis, EdgeLite-CNN showcases a marked 
advantage in the inference period and consuming 
energy as well. This makes it the fastest 
responding model to all of the others in the 
experiment with an average latency of 9.2ms 
which is essential in edge applications including 
autonomous navigation, real-time video 
processing, and on-device decision-making. 

Moreover, it has the least energy requirement to 
perform an inference of 15.4 mJ, which is 
comparable to MobileNetV3 (22.7 mJ) and 
GhostNet (18.6 mJ). The credit owes to the 
depthwise separable convolutions and efficient 
quantization that both decrease compute overhead 
and memory access the two major factors in 
energy consumption of an embedded system. 
These findings all affirm that EdgeLite-CNN is 
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competitive with both respects, not only in terms 
of meeting the accuracy requirements of typical 
edge AI tasks, but also in terms of providing 
extreme latency and energy restrictions, offering a 

fitting candidate to the next-generation edge 
computing implementations in applications such 
as wise well-being, commercial Internet of Things 
(IoT), and battery-powered mobile devices. 

 
Table 2. Quantitative Comparison of Lightweight CNN Models on Accuracy, Latency, and Energy 

Efficiency 
Model Parameters 

(M) 
Accuracy 
(%) 

Inference 
Time (ms) 

Energy 
Consumption 
(mJ) 

MobileNetV3 1.5 90.1 13.4 22.7 
ShuffleNetV2 1.3 89.4 11.7 20.3 
GhostNet 1.1 88.9 10.5 18.6 
EdgeLite-CNN 0.89 91.3 9.2 15.4 

 
5. CONCLUSION 
This paper introduces a new lightweight 
convolutional neural network architecture, named 
EdgeLite-CNN, that carefully designs as a dedicated 
and constrained framework to meet the much 
more high-performance requirement of emerging 
edge computing systems. Since EdgeLite-CNN also 
combines sophisticated design techniques, 
including attention-based pruning in the selection 
of effective feature sets, depthwise separable 
convolution in efficient computing, and 
quantization-aware training in the preparation of 
the model itself, a highly coveted balance between 
accuracy, latency, models size, and power 
consumption. A large model with a comprehensive 
experimental validation performed on benchmark 
data sets and on representative edge platforms 
(Raspberry Pi 4, Jetson Nano, and ARM Cortex-
M55) depicts that EdgeLite-CNN is more efficient 
in energy consumption and inference speed not 
only than existing lightweight models such as 
MobileNetV3, ShuffleNetV2, and GhostNet, but also 
with higher accuracy since the parameters are 
much fewer. Such performance validates the 
capabilities of EdgeLite-CNN as an efficient and 
scalable solution to real-time applications in areas 
like smart healthcare, wearable computing, 
intelligent surveillance and industrial internet of 
things. To conclude, the future works will be 
devoted to making EdgeLite-CNN more flexible and 
robust by providing support to neural architecture 
search (NAS) driven model-definition capabilities, 
multi-modal input fusion, and generalisation to 
domain-specific optimisations of federated and 
privacy-preserving edge AI use-cases. 
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