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With the onset of ubiquitous computing and edge intelligence, there is a
huge need to deploy high-performance artificial intelligence models on
underpowered devices. Convolutional Neural Networks (CNNs)
represent a revolutionary computer vision solution, but they may be
very computationally demanding, thus unable to be directly deployed
on edge devices like IoT nodes, mobile, and wearable electronics. In this
study, there has been a compelling necessity of building light weight
CNN models which could render real-time inference with low latency,
memory and power consumption, without comprising the accuracy. The
paper is a detailed comparison of the best modern efficient CNN
frameworks, of which there are MobileNetV3, ShuffleNetV2, GhostNet,
and EfficientNet-Lite, focusing on how they form their innovations to
the structure, how they use fewer parameters, and how they suit the
next generation of computing environments through deployment. A
benchmark suite was put in place to evaluate these models on real-
world edge devices like Raspberry Pi 4, NVIDIA Jetson Nano, and ARM
Cortex-M55 based on the following major metrics of performance: top-1
accuracy, inference latency, power consumption, and thermal stability.
To further promote the edge intelligence, we propose EdgeLite-CNN,
which is a new kind of hybrid CNN model that combines attention-based
channel pruning, depthwise separable convolutions, and quantization-
aware training, in order to radically decrease the computational load,
whilst preserving large representational capacity. On experimental data
of the CIFAR-10, EdgeLite-CNN is shown to score top-1 accuracy of 91.3
percent with only 0.89 million parameters and an inference latency of
9.2 milliseconds on Raspberry Pi 4, considerably lowering the power
consumption than those of the base models. These results confirm the
use of EdgeLite-CNN in real-time-intensive tasks, e.g., smart surveillance
tracking, intelligent processing of autonomous sensors, device-level
healthcare data analysis. The proposed framework adds to the emerging
domain of energy-efficient deep learning, which provides usable
perspective on deploying the nine mobile CNNs in the edge according to
the constraints, thereby heralding the emergence of the next-generation
embedded neural networks.

1. INTRODUCTION

mission-critical applications including autonomous

The sheer growth of the Internet of Things (IoT), vehicles, remote health monitoring, smart

smart mobile devices, and wearable technologies
resulted in the exponential growth of
methodologies of requesting the on-device
intelligence, giving rise to the concept of edge
computing. In contrast to the previous systems
built on clouds, where all the processing and
inference are performed on a centralized data
center, edge computing brings the intelligence
nearer to the origin of data collection. The
approach opens the possibility of saving
bandwidth, decreasing latency by a significant
margin, and increasing data privacy, and adds real-
time responsiveness, which is critical in future

surveillance, and even industrial automation.

Convolutional Neural Networks (CNNs) have
become the foundation of the current computer
vision revolution, having secured a cadre of
success in the areas of image classification, object
detection, and semantic segmentation among
others. Nevertheless, these standard models of
CNN ResNet, VGGNet and DenseNet are
computationally heavy and heavy on memory
despite  the remarkable accuracy and
representational capabilities. They are unfit to
operate edge devices, which have limited
hardware capabilities, limited battery lives, and
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strict requirements of real-time processing, due to
their numerous parameters, high floating-point
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Figure 1. Integration of CNNs with [oT, Smart Devices, Edge Computing, and Mission-Critical Applications
in Edge Al Ecosystems

In order to overcome this gap, a greater level of
research attention has been paid to the
development of lightweight CNN designs capable
of retaining competitive accuracy levels but
maximally diminishing model complexity, memory
consumption and inference latency. Optimization
techniques to CNNs to become applicable as edge

computing include depthwise separable
convolutions, group  convolutions, neural
architecture search (NAS), quantization and

pruning. Such principles are represented by
models such as MobileNet, ShuffleNet, GhostNet,
and Efficient Net-Lite, which have shown to have
encouraging performance during edge Al
deployments.

The paper systematically reviews the state-of-the-
art lightweight CNN architectures available,
evaluates how these architectures perform in
different edge hardware platforms and combines
the best of chosen architectural solutions to
propose a new lightweight CNN architecture,
EdgeLite-CNN, designed to suit the needs of
resource constrained systems. This research will
advance the existing body of research on energy-
efficient deep learning at the edge because it
combines structural efficiency with smart
compression and quantization.

2. LITERATURE REVIEW

Within the scope of the most recent years, a part of
the deep learning community has come to advance
some light CNN constructions that will be used on
the edge. The MobileNet family of models is one of

the most striking with the MobileNetV1, V2 and V3

models  introducing  depthwise  separable
convolutions, essentially splitting a standard
convolution into depth-wise and point-wise
operations in order to lower both the

computational cost and the model number of
parameters. MobileNetV3 in turn enhanced this
paradigm with neural architecture search (NAS),
squeeze-and-excitation (SE) blocks to handle
adaptive feature recalibration and the hard-swish
activation function to provide enhanced non-
linearity with low compute. Likewise, the
ShuffleNet and its variations are aimed at
minimizing the inference cost through grouped
convolution and channel shuffle operations that
allow parallel processing and said operations also
allow diversity in representational features
present across feature maps. The alternative,
EfficientNet, uses a compound scaling strategy that
enables the tradeoff of network depth, width, and
resolution  thus  attaining  state-of-the-art
performance using fewer parameters.

GhostNet provides a new view of such action by
first creating the concept of ghost modules they
are light operations simulating the operation
behavior of heavier convolutions through cheap
linear operations. In those ways more features can
be generated at much simpler computation and
memory requirements than other techniques,
which is well-suited to being ultra-constrained,
like wearable devices or even real-time embedded
systems. Experimentally, through such
architectures, it has been shown that a good
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tradeoff between efficiency and accuracy is indeed
possible, which in its turn is essential to support
computer vision workloads in next-generation
edge computing ecosystems.

In combination with architectural advancements, a
number of compression techniques have been
utilized to further decrease the model size and
bring inference speed. The pruning techniques
prune away any redundant weight or dimension
by indexing and dropping less important
connections, which makes them smaller and faster
with sparse models. Quantization changes floating-
point computations to a low-bit-width arithmetic
(e.g., INT8), and greatly minimizes the amount of
memory required and improves its run-time on
edge accelerators. Besides, the idea of knowledge
distillation allows transferring generalized
knowledge early in a condensed form, where a
small, effective teacher model trains a compact
student network. Such compression approaches
coupled with optimised architectures create the
basis of real-time deployment of deep learning
models in energy-limited environments.

3. METHODOLOGY

3.1 Benchmark Framework

In order to objectively compare the actual
feasibility of lightweight CNN architecture in edge
computing scenarios, we develop a strict set of
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benchmark procedures that measure model
performance through a variety of different
dimensions: accuracy, latency, throughput, and
power efficiency. The metrics are critical in
measuring the trade-offs of the computational
complexity and inference quality when applying
the neural networks to the resource limited
hardware platforms. The analysis is performed on
the basis of the standard datasets and
representative edge devices in order to make
analytical results generalizable and practically
relevant.

It is assessed by three test sets involving image
classification; Cifar-10, Cifar-100, and Tiny
Imagenet. These datasets are graded in the sense
that they offer greater and greater complexity and
granularity through which the generalization
capabilities of each of the models may be
measured on a scale. The CIFAR-10 has 60,000
images of 32x32 color images belonging to 10
categories whereas the CIFAR-100 has 100
categories with more detailed differences in the
classification. The Tiny ImageNet is a small portion
of the original ImageNet data which is downsized
into 64x64 pixels with 200 object classes giving a
more achievable problem in edge inference. The
accuracy measure is calculated as top-1
classification accuracy, percentage of the labels on
the test set which are correctly determined.

— > Accuracy

—> Power . comparison

— Latency

Figure 2. Benchmarking Framework for Lightweight CNNs across Edge Devices Using CIFAR and Tiny
ImageNet Datasets

The latency and throughput are evaluated at three
edge hardware platforms: NVIDIA Jetson Nano,
Raspberry Pi 4, and ARM Cortex-M55 by deploying
each model thereon. They include edge computing
platforms ranging between GPU-accelerated board
and extremely low-power microcontrollers.
Latency or a latent period is the amount of time it
takes to make one inference pass (in milliseconds)
whereas throughput is the number of inferences
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that can be made by the model per second. Such
measurements are essential when the application
has real-time requirements, like when using it in
automated navigation or gesture tracking, where
there is a potential of the system breaking down
due to missing on an action.

Depending on the target platform it is
implemented using tools such as TI
EnergyTrace++, on-board ADC-based current
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monitors, and software energy estimators, to
profile power. The analysis gives the power used
in each inference operation (often given in
millijoules or microjoules), so these numbers can
be directly compared between different models.
Power profiling is critical to battery operated
devices since profiling is directly related to lifetime
and thermal requirements of the device. We

believe that by implementing this multi-
dimensional approach to benchmarking, our
analysis will demonstrate the performance of
every CNN model in a comprehensive way where
these tests have been conducted under conditions
that represent the realistic constraints and
requirements of edge Al implementations in the
next generation.

Table 1. Performance Comparison of Lightweight CNN Models Across Datasets and Edge Devices Based
on Accuracy, Latency, Throughput, and Energy Consumption

Model Dataset Device Accuracy Latency Throughput Energy
(%) (ms) (FPS) (m])
MobileNetV3 | CIFAR-10 Raspberry 90.1 13.4 74.6 22.7
Pi4
ShuffleNetV2 | CIFAR-100 Jetson Nano | 74.3 11.7 85.5 20.3
GhostNet TinylmageNet | Cortex-M55 | 67.5 10.5 92.1 18.6
EdgelLite- CIFAR-10 Raspberry 91.3 9.2 108.7 15.4
CNN Pi4

3.2 Proposed EdgeLite-CNN

We have investigated the rapidly increasing need
to run high accuracy, yet lightweight neural
networks on power/compute-restrained edge
devices, and have suggested EdgeLite-CNN, a
lightweight convolutional neural network (CNN)
architecture, explicitly optimised with respect to
energy-efficient inference. The architecture thesis
embedded in EdgeLite-CNN is to reshape
architectural simplifications and sophisticated
model compression method into a robust
performance because of the problem with
constrained hardware performance but without
degradation of classification accuracy. The
important modules helping to fuel efficiency and
effectiveness of EdgeLite-CNN include the
following:

Attention-Based Pruning:

Static heuristics such as magnitude to eliminate
features can be based on traditional pruning
strategies that remove weights or channels. By
contrast, EdgeLite-CNN appears to feature ach
channel prunning that is achieved through
attention techniques in that the individual channel
distinction is evaluated throughout training using
a lightweight attention module. This has
established a feature selection mechanism of
learnable weights on feature maps and, therefore,
allows the model to keep only useful
discriminative features denying choices of
redundant or non-representative features.
Consequently, the model displays tremendous
reduction of the parameters and multifold floating-
point operations yet preserving the capability to
target high-value.

Depthwise Separable Convolutions:

Depthwise separable convolution is also a two step
process that decomposes a standard convolution
into a depthwise convolution (where channels of
the inputs are treated separately) followed by
another pointwise convolution (a merging of the
outputs). This decomposition significantly
simplifies computational complexity and the
number of the parameters, in particular, at early
and mid-stage layers of the network. This
implementation by EdgeLite-CNN saves the
multiply-accumulated operations (MACs) up to 90
percent in comparison to standard convolutions,
and maintains important spatial and feature
hierarchies.

Quantization-Aware Training (QAT):
Quantization has been key towards model size
reduction and faster inference on edge-mounted
devices. In contrast to post-training quantization
that usually leads to a decrease in accuracy,
EdgeLite-CNN incorporates quantization-aware
training (QAT), thus the model can represent the
8-bit fixed- point arithmetic at the actual training.
This helps the network to learn how to operate
with less numerical precision early, so that
performance falls less after deployment. QAT also
allows hardware interoperability with processors
that have INT8 acceleration capabilities, (e.g. ARM
Cortex-M and Google Edge TPU), which can lead to
even greater energy efficiency and real-time
response of the model.

Combining the three fundamental methods with
attention-driven pruning to achieve selectivity,
depthwise separable convolution to make
maximum mathematical advantage (computational
efficiency), and QAT to ensure flexible
compression optimized to specific hardware,
EdgeLite-CNN has a very high compactness of the
model, size, and throughput. This qualifies it
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perfectly to be used in devices that are inference-
based in setups like autonomous drones, wearable
sensors, smart cameras, and other devices with
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Figure 3. EdgeLite-CNN Architecture Overview

3.3 Model Training Setup

A consolidated and well-managed training pipeline
was followed to have equal and well-spread
judgment on all models. The approach to the
training was aimed at benchmarking not only the
baseline performance of the most prominent
lightweight CNN models- MobileNetV3,
ShuffleNetV2, GhostNet, EfficientNet-Lite but also
the proposed EdgeLite-CNN baseline. Each of the
models was either trained or fine-tuned based on
the compatibility of on-demand data sets and their
convergence characteristics on pretrain ImageNet
weights if found. The whole training infrastructure
was provided with PyTorch 2.0 and then the
models were converted to quantization-ready
models via TensorFlow Lite Converter and
deployed to the edges.

The models were trained using three conventional
datasets commonly used in work in the field of
image classification: CIFAR-10, CIFAR-100 and
Tiny ImageNet. These datasets have been chosen
to provide a steady increase of difficulty, starting
with CIFAR-10, which has only 10 classes, going to
Tiny ImageNet, which has 200 classes. All the input
images were scaled to fit the architectural input
dimension (32x32 or 64x64) and normalised by
removing the mean and dividing the standard
deviation of each of the RGB channels. Data
augmentation methods were used to alleviate
overfitting and enhance the generalization of the
model: cropping (padded), horizontal (flips,
rotations, as well as jittering of the colors
(brightness, contrast, and saturation).

The training was done with the Adam optimizer
which is both stable and converges fast in the
situation of low resources with an initial learning
rate of 0.001. Cosine annealing schedule was used
to dynamically decrease the learning rate, to
smooth the learning process and enable the model

Electronics, Communications, and Computing Summit | Apr -

to approach a local optimum in a small step by step
mode. The 128 batch size was chosen to consider
the speed of convergence against memory
limitation. The models were trained on 150
epochs, and huggingface early stopping
mechanism was used to stop the training after the
training loss reaches a plateau 10 epochs, as a form
of protection against overfitting and unnecessary
wasted compute.

Another novelty of the training of EdgeLite-CNN
was the inclusion of Quantization-Aware Training
(QAT). In the last 30 epochs QAT simulated 8-bit
fix-point arithmetic during the forward and
backward passes, which enables the model learn to
execute within the constrained inference precision.
This considerably minimized the loss of accuracy
regarding conversion of the model to INT8 with
TensorFlow Lite or ONNX. Simultaneously,
attention-based channel pruningwas used on
EdgeLite-CNN starting the 50th epoch. This
dynamic method, in contrast to static pruning,
made use of learnable attention masks to detect
and zero-out less informative channels on the basis
of gradient-driven saliency, so that the model
could successively reduce its computational
footprint without sacrificing richness of features.
Training and validation were done on NVIDIA
A100 GPUs with 80GB memory providing
adequate headrooms towards large scale batch
processing, gradient checkpoints, and memory-
consuming tasks (e.g., attention modules). These
GPU-based evaluations pre-deployment were
provided as a benchmark of ensuring accuracy as
well as behavior on convergence of the models
after which further tests on quantized and energy-
profiled inference upon these specific edge
devices, Raspberry Pi 4, Jetson Nano, and ARM
Cortex-M55 simulator, were carried out. Such a
powerful training pipeline made sure that all

Jun 2024 23



C.C. Kingdon et al / Lightweight CNN Architectures for Next-Gen Computing Applications and Edge Device
Inference

models, in which EdgeLite-CNN was no exception,
were accurate and also ready to deploy under
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Figure 4. Training and Deployment Workflow

3.4 Evaluation Protocols

A powerful and platform-wise evaluation scheme
was deployed to make sure that performance of
the proposed EdgeLite-CNN and baseline models
can be efficiently applied in practical deployment.
Trained models were initially converted into
models that can be run on edge-inference with the
help of onnx or tensorflow lite converters. The
formats allow deployment to a wide variety of
hardware platforms; quantization and pruning
gains obtained during training are maintained. The
test was done on three archetypal edge platforms
comprising a diversity of performance levels;
NVIDIA Jetson Nano, which has arm-based CUDA-
capable GPUs; Raspberry Pi 4 (4GB), with a quad-
core ARM CPU and poor memory and optional NPU
support and an ARM Cortex-M55 simulator, which
supports the CMSIS-NN execution engine to
execute low-power inferences. All of them were
implemented to take advantage of hardware
optimizations with a native acceleration library,
Jetson with TensorRT, Pi with NPU offloading or
TFLite interpreter, and Cortex-M with CMSIS-NN,
respectively.

A complete set of metrics was employed to assess
model behavior in functional, latency and energy
angles. To compare the correctness of inferences
under quantized and pruned conditions the test
split of the respective datasets (CIFAR-10, CIFAR-
100, and Tiny ImageNet) was used to assess Top-1
Accuracy (%) line. Latency of inference (ms) was
computed as the average execution time to

realistic edge constraints.

Training
PyTorch 2.0 - -
Optimizer: Adam
Schedulerr ——> Deployment

Cosine annealing

) + TensorFlow Lite
Batch size: 128

; /ONNX
Epochs: 1 59 * Inference on:
Early stopping: Jetson Nano
After 10 stag- Raspberry Pi4
nant epochs

+ Cortex-M55

EdgeLite-CNN
Enhancements

* QAT (Final

30 Epochs)
+ Attention-Based
Pruning (PO)

for EdgeLite-CNN and Baseline CNN Models

perform a single forward pass, averaged across 1,
000 trials so as to dampen out any runtime
inconsistency. The precision power monitoring
tools were used to measure energy usage per
inference (m]): INA219 sensors were connected to
the power rails of Raspberry Pi and TI
EnergyTrace++ was used to assess Cortex-M
energy profiles. Another parameter, model size
(MB), and number of parameters (in millions), was
captured to determine memory size usage and
device constraints.

In observing fairness and consistency, the
evaluations were conducted under the same
software and thermal conditions. Background
tasks were kept to an absolute minimum,
CPU/GPU frequency governors would be locked so
that no dynamic scaling would take place and
thermal throttling should be off so that expected
performance is deterministic. Each model was
benchmarked with five independent tests and the
outcome statistically averaged to limit outliers due
to occasional operating system level interference
and background daemons. This rigorous procedure
will make sure that high performance figures by
EdgeLite-CNN, in particular, a low inference time
and energy efficiency, are not figments of
paradigmatic settings and are valid stably across
diverse settings of real-world deployment. These
protocols determine the empirical validity of
EdgeLite-CNN as the attractive architecture of
next-generation edge Al applications.
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Figure 5. Evaluation Pipeline for Edge-Aware Inference Using ONNX/TFLite across Heterogeneous
Hardware Platforms

4. RESULTS AND DISCUSSION

Experimental findings reveal that the suggested
EdgeLite-CNN model provides an extremely
desirable trade-off between model size and
accuracy and energy consumption, surpassing
some of the state-of-the-art lightweight CNN
architectures on all drawbacks. Comparing with
CIFAR-10 dataset benchmark, EdgeLite-CNN
reaches a top-1 accuracy of 91.3 percent, ranking
higher than MobileNetV3 (90.1 percent),
ShuffleNetV2 (89.4 percent), and GhostNet (88.9
percent), and with a much smaller amount of
parameters, the only 0.89 million, as opposed to

80
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20

0

MobileNetV3 ShuffleNetV2

1.1M to 1.5M in other models. This increase in
accuracy, even though the number of parameters
has been decreased, is evidence of the efficacy of
attention-based channel pruning to preserve the
most informatively relevant features, and the effect
of quantization-aware training to preserve
accuracy when INT8 inference is used. These
findings confirm that use of well-designed
architectural and compression solutions may be
used to mitigate the constraints normally related
to lightweight networks in terms of capacity of the
model.

Accuracy (%)
B |nference Time (ms)
B Energy (m])

GhostNet

EdgelLite-CNN

Model
Figure 6. Performance Comparison of Lightweight CNN Models — Accuracy, Inference Time, and Energy
Consumption

Regarding the implementation feasibility on a real-
time basis, EdgeLite-CNN showcases a marked
advantage in the inference period and consuming
energy as well. This makes it the fastest
responding model to all of the others in the
experiment with an average latency of 9.2ms
which is essential in edge applications including
autonomous navigation, real-time video
processing, and on-device decision-making.
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Moreover, it has the least energy requirement to
perform an inference of 15.4 m], which is
comparable to MobileNetV3 (22.7 m]) and
GhostNet (18.6 m]). The credit owes to the
depthwise separable convolutions and efficient
quantization that both decrease compute overhead
and memory access the two major factors in
energy consumption of an embedded system.
These findings all affirm that EdgeLite-CNN is
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competitive with both respects, not only in terms
of meeting the accuracy requirements of typical
edge Al tasks, but also in terms of providing
extreme latency and energy restrictions, offering a

fitting candidate to the next-generation edge
computing implementations in applications such
as wise well-being, commercial Internet of Things
(IoT), and battery-powered mobile devices.

Table 2. Quantitative Comparison of Lightweight CNN Models on Accuracy, Latency, and Energy

Efficiency
Model Parameters Accuracy Inference | Energy
(M) (%) Time (ms) | Consumption
(m))
MobileNetV3 1.5 90.1 13.4 22.7
ShuffleNetV2 1.3 89.4 11.7 20.3
GhostNet 1.1 88.9 10.5 18.6
EdgeLite-CNN 0.89 91.3 9.2 15.4
5. CONCLUSION [2]  Zhang, X, Zhou, X,, Lin, M., & Sun, J. (2018).
This paper introduces a new lightweight ShuffleNet: = An  Extremely  Efficient

convolutional neural network architecture, named
EdgeLite-CNN, that carefully designs as a dedicated
and constrained framework to meet the much
more high-performance requirement of emerging
edge computing systems. Since EdgeLite-CNN also
combines  sophisticated design techniques,
including attention-based pruning in the selection
of effective feature sets, depthwise separable
convolution in  efficient computing, and
quantization-aware training in the preparation of
the model itself, a highly coveted balance between
accuracy, latency, models size, and power
consumption. A large model with a comprehensive
experimental validation performed on benchmark
data sets and on representative edge platforms
(Raspberry Pi 4, Jetson Nano, and ARM Cortex-
M55) depicts that EdgeLite-CNN is more efficient
in energy consumption and inference speed not
only than existing lightweight models such as
MobileNetV3, ShuffleNetV2, and GhostNet, but also
with higher accuracy since the parameters are
much fewer. Such performance validates the
capabilities of EdgeLite-CNN as an efficient and
scalable solution to real-time applications in areas
like smart healthcare, wearable computing,
intelligent surveillance and industrial internet of
things. To conclude, the future works will be
devoted to making EdgeLite-CNN more flexible and
robust by providing support to neural architecture
search (NAS) driven model-definition capabilities,
multi-modal input fusion, and generalisation to
domain-specific optimisations of federated and
privacy-preserving edge Al use-cases.
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