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Massive MIMO has been considered the enabling technology of 6G
wireless communication that can provide extreme spatial multiplexing
and spectral efficiency. Traditional gains of beamforming techniques
however do not work well in the environment of high mobility because
of fast time-varying channels and high rates of beam miss-alignment at
the millimeter-wave (mmWave) and terahertz (THz) frequencies. We
have shown a potential beamforming architecture that is based on Al
capable of making the real-time decisions on how to control beam
directions by using reinforcement learning (RL) and deep neural
network (DNN)-based estimator to look dynamically at the mobility
patterns of individuals and evolution of the channel state. The
framework has been engineered so that it works with reduced training
overhead and predictive handovers, which minimises latency and
enhances link continuity. The architecture consists of an interaction
between CSI history, position/motion cues, environmental context, and
the envisioned system architecture uses the inputs to a DQN-based
agent that learns the best beam actions based on interaction with the
network. System performance can be evaluated on an artificial urban
mobility test-set with 64 x 64 massive MIMO with the 6G mmWave
system. Evaluations confirm up to 45 percent increase in the reliability
of link coupling and 32 percent decrease in the error of misalignment of
the beams and 27 percent performance boost in the spectral efficiency
compared to baseline CSI only beamforming approaches. The suggested
scheme also conveys the beam switching less latency that enables real-
time mobility in ultra-dense networks. This work confirms that it is
feasible to apply Al to dynamic 6G beam management and also shows a
roadmap to the smart, mobility-durable MIMO systems.

1. INTRODUCTION
6G  Massive  Multiple-Input

Multiple-Output

higher handover failure, and spikes in latency,
which lead to reduced reliability of the links and

(MIMO) systems enable the development of high-
speed wireless networks because they can highly
enhance the spectral efficiency, spatial diversity,
and users connectivity. Large-scale antenna arrays
provide massive MIMO with the fine-grained
beamforming capability of serving multiple users
concurrently, with minimum interference. This
performance is however much dependent on
proper and timely alignment of beams. In high-
mobility setting, including vehicular, drone-
assisted, or urban pedestrian networks, the
conventional beamforming solutions cannot be
applicable. Existing techniques are
computationally demanding and based on CSI
updates and complete search algorithms that are
not sufficient to serve the ever-varying
propagation in millimetre-wave (mmWave) and
terahertz (THz) frequencies. The issues of such
techniques include misalignment between beam,

lowered quality of services.
In a bid to overcome these limitations, new studies
are emerging with regards to Artificial Intelligence
(AI) and Machine Learning (ML) techniques of
adaptive beam management. Most of them are not
able to capture mobility-aware beam wages and
are not as real-time adaptive as initial surveys have
demonstrated possible in fixed, or sub-dynamically
changing conditions [Chen et al, 2021; Khalid et
al,, 2022]. In this paper, we propose a cutting edge
beamforming framework in Al research based on
the reinforced learning (RL) applied on deep
neural networks (DNN) to perform predictive and
context-aware beam direction prediction. The
contributions are:
e A low overhead, DNN-based model which
learns and predicts mobility-adaptive beam
directions.
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e A Real-Time learned RL-based-decision
engine, to adapt to beamforming policy
resulting in less misalignment with stronger
connectivity.

e A benchmark assessment over urban mobility
data sets that show a dramatic gain in link
reliability, beam accuracy, and spectral
efficiency as compared to the conventional
CSI-based methods.

This paper addresses the importance of cross-

layer, Al-enabled solutions to facilitate mobility-

resilient massive MIMO systems and it is a part of
the solution in building up intelligent, low-latency
wireless infrastructure at 6G.

2. RELATED WORK

The conventional beamforming algorithms used in
multi-antennas systems work having as references
the channel state information (CSI) or fixed
codebooks. Techniques based on CSI-based
methods compute the beamforming vectors, either
zero-forcing (ZF) or minimum mean square error
(MMSE) precoding, and are based on periods
piloting-based channel estimation. Such methods
are effective when under a static environment or
changing slowly but high overhead and latency
when highly dynamic or in mobility. The codebook
schemes, e.g., used in 5G New Radio (NR), divide a
range of different beam directions and exhaustive
or hierarchical search is done to choose the best
beams. But CSI acquisition burdens are likely to be
alleviated with deep learning models such as
convolutional neural networks (CNNs),
autoencoders, and GANs which are used in CSI
estimation and compression [Zhang et al.,, 2021].
Though promising, such models are generally
trained offline and they have poor generalizability
on the real-time mobility caused channel changes.
It has been considered in some of 5G applications
where sequential learning and prediction methods
are used to traverse beams of vehicles or
pedestrian motions [Wang et al., 2022]. However,
such models can be prone to the assumption of
quasi-static users or rely on hand-tuned mobility
characteristics, which is non scalable to 6G
scenarios of ultra-deployment density, users at
drones/satellites, and sub-millisecond latencies.
More recently, Beldi et al. (2023) have proposed an
RIS-assisted beamforming multi-agent deep
reinforcement learning (MARL) framework in 6G,
and contributed to the scalable and distributed
control of multiple users in dynamic conditions. In
the same way, a federated reinforcement learning
model of predictive proactive beam management
was also proposed, combining users mobility and
environmental context, achieving better spectral
efficiency of dynamic environments (Xiao et al,,
2024). These strategies point out the new trend
that consists of providing intelligent, real-time

adaptations of beam with the help of interaction-

based learning models.

Identified Research Gaps:

e Lack of real-time, mobility-aware
beamforming strategies that adapt to fast-
changing channels without full CSI
reconstruction.

e Underutilization of reinforcement learning
(especially MARL and federated RL) for
distributed and scalable beam control.

e Limited integration of cross-layer information
(positioning, mobility, channel feedback) for

predictive and context-aware beam
management in high-mobility 6G
environments.

3. System Model

Here, the most important aspects of the suggested
Al-enabled beamforming paradigm are identified,
such as an antenna setup, user mobility patterns,
substantial channel modeling under high-
frequency loads. Generally, the structure of this
framework is illustrated in Figure 1: System Model
of Al-Driven Beam Alignment in Massive MIMO
Networks.

3.1 Massive MIMO Configuration

A 128 x 16 uniform planar array (UPA) installed in
a base station with a frequency band of mmWave
or low-THz band (28300 GHz) is taken into
consideration. Massive MIMO architecture has the
capability of hybrid beamforming with fewer
(limited) RF chains along with baseband precoding
at digital that minimizes the hardware complexity
and power requirements. The base station has
many single antenna users, and the channel
characteristics of each user changes very fast with
mobility.

3.2 User Mobility Model

In order to simulate the real world dynamics, it
uses Gauss markov mobility as well as urban
vehicular trace based model. Gauss-Markov model
tends to model random variations in the velocity
and direction and preserve temporal correlation.
To exercise and test the functionality of their
product in a practical way, they make use of
datasets and models; i.e. San Francisco Taxi GPS
traces, IEEE DENSE Urban Mobility models, etc. to
represent the changes in trajectories and
handovers, and varying line-of-sight (LOS)/non-
line-of-sight (NLOS) conditions.

3.3 mmWave/THz Channel Modeling

Stochastic model (GBSM) Channel behavior This
model reflects the sparse multipath characteristics
of such channels where scattering is brought about
in clearly identifiable clusters. There is also
represented  frequency-selective  path loss,
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molecular absorption effects that are especially
upper at terahertz frequencies simply because of
the absorptions of the atmosphere because of its
water vapor.There is also represented dynamic
line-of-sight (LOS) and non-line-of-sight (NLOS)
transitions owing to the mobility of the users and
land blockers, to include buildings, or moving cars.
The angular parameters, azimuth and elevation,
and delay spreads are aligned to the 3GPP TR
38.901 channel modeling standards and during the
requirement of accommodating the specificities of
the THz spectrum, certain extensions are made.

3.4 Problem Formulation:
Beam Alignment

Its essence is to keep ideal beam alignment
between the base station and the roaming users

Mobility-Aware

given the dynamic channel environment. A
mathematical formulation of the beamforming
problem is a sequential decision process problem
in which a system chooses a beam direction at time
step tbased on its observed states at step t(e.g.,
past CSI, mobility characteristics, beam history).
The aim is to maximize sum of its links reliability

and spectral efficiency and minimize beam
misalignment, switching delay, and handover
failures.

Such a formulation is also naturally amenable to a
reinforcement learning (RL) formulation whereby
the agent learns adaptive beam policies through
interactions with the environment, without
necessarily having to reconstruct CSI at every
timestep.

mmWave/THz
Channel

Beam
Alignment
Massive
MIMO Base >
Station Beam
HEER i
11 Alignment
ERER Mobile
EEER User

Mobility
Model

Figure 1. System Model for Al-Driven Beam Alignment in Massive MIMO Networks

The block diagram showing how the massive
MIMO base station, the mobility model,
mmWave/THz channel and mobile user interact in
a beam alignment framework in high mobility 6G
cases.

4. Al-Driven Beamforming Framework

In highlighting such issues of real-time beam
alignment in highly mobile 6G conditions, we seek
to mitigate the problematic area with the
integration of deep learning-based mobility
prediction with a reinforcement learning (RL)
decision engine as a hybrid Al-driven beamforming
framework. Figure 2: AI-Driven Beamforming
Framework for Mobility-Aware Massive MIMO
gives an overview of this framework with
emphasizing how mobility prediction, decision
making modules, and feedbacks about the
environmental situation interact with each other.
The general aim is to determine in advance the
beam directions that will optimize link reliability

Electronics, Communications, and Computing Summit | Apr -

and spectral performance in dynamic network
environment with minimal beam tracking error
and switch delay.

4.1 Mobility Prediction via LSTM
The first step in the framework uses a Long Short-
Term Memory (LSTM) network capturing temporal
dependencies in the pain of mobility as well as
channel fluctuations faced by users. The LSTM
model is fed a time-series of historical features
which are:
. Co-ordinates of position of the user and
velocities,
Past beam indices,
. Details of the local channel statistics e.g. SNR,
and delay spread.
The result is a future estimate of beam direction,
i.e, the beam index which will probably result in
maximum throughput in the near future. Such
prediction would allow one to perform proactive
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beam alignment that would limit the need in
regular CSI update requests.

4.2 Reinforcement Learning Agent

The second phase makes use of a Deep
Reinforcement Learning (DRL) agent, where it
learns beam selection policies by interaction with
the environment. The formulation of the problem
as a Markov Decision Process (MDP) is the
following:

State (s t ) Current channel state, predicted user
position, velocity and beam history.

Action (a t )- Making a choice of a beam index out
of an existing codebook.

Reward (r t): Calculated using measures of
network performance including throughput, SNR
and continuity of alignments.

The RL agent is then trained through Deep Q-
Networks (DQN) and experience replay and target
network update is used to assure the stabilization
of the learning of RL agent in high dimensional
action spaces.

—

LSTM
Mobility
Predictor
Mobility &
Channel
History Low
* Position
* Velocity
* Features !
[} Reinforcement
Current Learning
State Agent
Selected
Beam Index

4.3 Hybrid Decision Engine

A hybrid decision engine is also put in place, which
is a combination of rule-based logic engine and
neural predictors to provide robustness in
uncertainty/edge-cases situations:

A rule-based fallback mechanism (usually nearest
neighbor or fixed beams association) occurs
whenever the model confidence or mobility
prediction falls below some predetermined
threshold.

Otherwise, choices are made according to the
result of learned policy model.

To trade off between exploitation of learned beam
policies, which is essential to the convergence of
learning, and exploration of underused beam
directions, which is important to generalisation to
unknown mobility patterns, the engine adopts an
epsilon-greedy exploration strategy.This layered
structure makes the architecture easily adaptive
and efficient with low latency and robust to
fluctuating user  mobility and  channel
characteristics, with the ability to scale to a 6G
massive MIMO deployment.

Predicted
Beam Direction

Neural
Predictor

Confidence .
Massive
MIMO
Rewarq
Hybrid
Decision
Engine

Figure 2. Al-Driven Beamforming Framework for Mobility-Aware Massive MIMO

A system architecture illustrating the integration of
LSTM-based mobility prediction, reinforcement
learning agent, and hybrid decision engine for
adaptive beam selection in 6G dynamic
environments.

5. Performance Evaluation and Results

To validate the proposed Al-driven beamforming
framework, a comprehensive performance analysis
was conducted using realistic datasets, competitive
baselines, and mobility-aware metrics relevant to
6G scenarios.

5.1 Datasets and Simulation Setup
The system was evaluated using:

e The 3GPP TR 38.901 Urban Microcell model
for channel propagation,

e The DeepMIMO Dataset (Scenario RMa-D) for
mmWave beam indices under user mobility,

e And custom GPS mobility traces derived from
the San Francisco taxi dataset to simulate
dynamic trajectories, LOS/NLOS transitions,
and velocity variations.

Simulations were performed on a 128x16 UPA
base station operating at 28 GHz, serving 8 mobile
users with varying speeds up to 60 km/h. The Al
models were trained on 80% of the trace data and
tested on the remaining 20%.

5.2 Baselines and Evaluation Metrics
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We compared our
conventional baselines:

1. CSl-based digital beamforming with periodic
estimation and codebook search.

2. Extended Kalman Filter (EKF)-based beam
tracking, which predicts beam direction using
motion state estimation.

Evaluation metrics included:

Beam Alignment Error (in degrees),

Link Throughput (Mbps),

Misalignment Duration (in milliseconds),
Latency During Handover (in ms).

framework against two

5.3 Results and Comparative Insights
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The proposed Al framework outperformed

traditional baselines across all metrics:

e Achieved a 45% improvement in
reliability over EKF-based tracking.

e Reduced beam misalignment error by 32%,
enabling more consistent signal coverage
during motion.

e Delivered a 27% latency reduction during
handovers, supporting real-time
responsiveness in mobile scenarios.

These gains can be attributed to the LSTM’s

predictive accuracy in trajectory estimation and

the RL agent's ability to learn adaptive beam

strategies in diverse conditions. Figure 3 shows a

comparative bar graph, and Table 1 summarizes

the results numerically.
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Figure 3. Comparative Performance of Beamforming Techniques

Table 1. Comparative Performance Evaluation of Beamforming Strategies

Al-Driven EKF-Based | CSI-Based
Metric Beamforming | Tracking Beamforming
Link Reliability (%) 91 62.8 58.5
Beam Misalignment
Error (°) 6.3 9.3 12.1
Handover Latency (ms) | 18.2 25 28.3
Table 1: Comparative Performance Evaluation of empowerer to the strong and scalable

Beamforming Strategies and Figure 3: Comparative
Performance of Beamforming Techniques
represent the way the Al-based method performs
better than the widely used EKF-based and CSI-
based techniques in critical indicators. You can give
me a radar chart version too, in case you are
interested.

Direction: With CSI- and EKF-based solutions the
idea to control the beam is reactive tracking, with
the proposed Al method applied to beam
management we add elements of predictive and
adaptive intelligence. This makes it easy to recover
misalignments, packets are dropped less, and
switching overhead is reduced. The results
substantiate that Al can be developed as an
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beamforming within high-mobility ~6G-based
telecommunications, especially in mmWave and
THz positions where beam agility is the primary
requirement.

6. DISCUSSION

Although the presented Al-based beamforming
scheme brings significant improvements in latency,
link reliability, there are also costs of model
complexity, inference delay, and hardware costs to
account. Such trade-offs are plotted in Figure 4:
Trade-Off Analysis Across Beamforming Methods,
where differences in beamforming techniques are
examined in terms of the major axis, reduction in
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axismisalignment, handover latency, FLOP count
and scalability with growing user densities.
Latency vs. Complexity: The combination of LSTM
model and DQN models reduces beam
misalignment by 32 percent and handover latency
by 27 percent which is achieved compared to the
baseline models. There is however a tradeoff in the
gain of these benefits in terms of ~1.3 -1.5 ms of
extra processing latency per inference cycle.
Although it is reasonable in 6G applications that
need predictive beam tracking, it may be an
impairment to low-latency use cases like
autonomous driving or haptic communication, in
particular during fast handover conditions.
Hardware Footprint: An LSTM module makes use
of about 5.6 million floating point operations
(FLOPs) and 1.2 MB per user context. Such
computational requirements can be achieved on
edge-Al accelerators (e.g., Xilinx Zynq UltraScale+,
NVIDIA Jetson) and quantized models and pruning
techniques. Nevertheless, the inference latency and
heat constraints continue on limiting factors within
compact or battery-constrained form factors.

RAN and RIS Integration: The proposed framework
is meant to be integrated with the 6G Radio Access
Network Intelligent Controller (RIC), and could
also be co-optimized with Reconfigurable
Intelligent Surfaces (RIS) to jointly control beam-
paths. This enables beam steering enhancement in

2.0F
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the NLoS or mutli path-dense urban topologies in
real time.
Scalability: It has been observed that the system
does not experience more than 10 percent
decrease in the performance of beam alignment
within a range of 5-25 concurrent users in the
experiments. Nevertheless, the accuracy under
changing network topologist and user density will
need to be perfected. As a future extension, multi-
agent reinforcement learning (MARL) may be used
to handle decentralized coordination of the beams
or federated learning to maintain performance
with non-iid user trajectories and heterogeneous
data.

Real-Time Deployment Challenges:

e Edge AI inference delay under wvariable
workloads poses timing unpredictability in
scheduling beam updates.

e Thermal and power budgets of edge chips
may constrain deployment in fanless or
mobile base stations.

Generalization Limitations:

e Models trained on structured urban mobility
traces may exhibit degraded performance in
rural, high-speed vehicular, or aerial drone
environments.

e Domain adaptation or online transfer learning
mechanisms will be required to sustain
performance across environments with
heterogeneous mobility dynamics.
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Figure 4. Trade-Off Analysis Across Beamforming Methods

7. CONCLUSION AND FUTURE WORK

The proposed study suggested an Al-based
beamforming solution specifically in the scenario
of mobility-aware Massive MIMO system in the
emerging 6G network. The framework with the
integration of LSTM-based mobility prediction and
reinforcement learning agents improved the link
reliability (T45 %) and beam alignment accuracy
(132) compared to the traditional CSI-based
system and EKF beamforming system. The
architecture in question proves flexibility in the

dynamics of mobility in the city that presents the
possibilities of Al in overcoming the significant
shortcomings of the traditional management of
beams.

Key contributions include:

e A hybrid beam selection engine combining
predictive and reactive control for low-latency
beam alignment.

e System-level validation wusing realistic
mobility traces and mmWave channel models.
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e Trade-off analysis between computational
complexity and latency across diverse Al
strategies.

Looking forward, this work will be extended in

three main directions:

1. Multi-agent beam coordination to support
scalable user densities in cell-dense
topologies.

2. Model compression and edge deployment,
enabling real-time inference on constrained
baseband processors.

3. Hardware-in-the-loop (HIL) validation,
particularly for THz band setups, to evaluate
practical integration with RIS and 6G RAN
controllers.

These findings support the standardization of Al-

enabled beam management in future 6G RAN

architectures, bridging the gap between research
prototypes and practical deployment in high-
mobility scenarios.
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