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As a new paradigm of decentralized artificial intelligence (Al), federated
learning (FL) has taken the form of a revolution to deal with privacy of
the data and efficiency of computational methods in contemporary
applications. When compared to the conventional centralized machine
learning techniques that necessitate the raw data to be relayed to a
centralized server, FL allows cooperative model training on edge
devices (e.g., smart phones, IoT-enabled sensors, and institutional
servers) and never loses sensitive data. In this paper, the author
examines how FL is integrated into the next generation of computing
paradigm, i.e., edge computing, 6G-supported ultra-low latency
communication, quantum-enhanced optimization to reach faster
convergence, and Al accelerators to enable real-time inference on the
edge. Much emphasis is made on using FL in such area as privacy-
preserving medical diagnosis, which is still highly sensitive as there are
severe regulatory and ethical issues on patient data. The paper engages
in a complex investigation of the privacy-preserving methods which
enlist the use of secure aggregation schemes, differential privacy
schemes, and homomorphic encryption, that will in turn work to make
the model resilient without violating privacy of individuals. Besides, the
approaches to optimizing the models in terms of working with non-IID
data and communication bottlenecks, as well as heterogeneity among
the client devices, are discussed. Experimental testing is done on a
variety of multi-institutional data consisting of medical imaging (CT
scans, X-rays), wearable diagnostic sensors, and structured electronic
health records (EHRs). Findings demonstrate that properly configured
and private-sensitive layers allow the FL-based architectures to reach
diagnosis accuracy similar to centralized models to drastically minimize
the privacy risk and communication overhead. Additionally,
performance measures such as accuracy, Fl-score, AUC, and privacy
leakage approximations affirm that FL provides a reasonable solution to
sensitive and real-life application in the medical domain of Al This
contribution presents the prospects of FL as a foundational technology
in next-gen computing systems and preconditions the formulation of
subsequent works in the field of federated neuro-symbolic modeling,
the blockchain-based system of audit trails, and explainable federated
Al that complies with the standards of ethical Al implementation.

1. INTRODUCTION

questions surrounding patient privacy, data

The healthcare sector in recent years experienced
an unparalleled increase in the number of the data
acquired with various sources, including wearable
health trackers, medical imaging systems,
electronic health records (EHRs), and remote
patient monitoring systems. These data streams
hold immense possibilities of opening new
horizons of intelligent diagnostics approaches, the
predictions of disease structures and customised
treatment plans. The exploitation of such sensitive
health data with traditional centralized machine
learning (ML) frameworks however poses serious

ownership, as well as compliance with regulations.
Centralized systems demand that the data is
gathered and kept on a central server, and hence
have an only one place of vulnerability that could
result in information breach, mishandling, or
failure to comply with confidentiality policies like
HIPAA, GDPR, and the DISHA guidelines in India.

In order to mitigate these issues, FL has come as a
revolutionary framework of distributed Al In
contrast with conventional ML methods, in FL, the
training of models can be done over a network of
distributed devices or sets of data silos (e.g.
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hospitals, clinics or individual devices) without
actually transferring raw data out of its source.
Every node locally trains and encryptically
exchanges model updates with a centralized
aggregator node and thus achieves data privacy
but can still contribute towards a global model.

Such a privacy-by-design strategy is especially
important in the area of medical diagnostics since
data there 1is highly sensitive, and trans-
institutional data exchange must be often
restricted by the laws and ethical concerns.
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Figure 1. Federated Learning Framework for Privacy-Preserving Medical Diagnosis

In a future environment of plated outward third-
generation computing systems, such as cloud
computing or 6G supported low-latency or
heterogeneous networks and edge leisure
surroundings, a quantum-aided optimization, or
gadget accelerators forming the Al, there is a
strong argument to be manufactured about how
significant the side of FL is. Based on the
combination of FL and generators of secure, but
inefficient, computation, namely differential
privacy and homomorphic encryption, the
proposed privacy-preserving medical diagnosis
model is strong and scalable. This work aims at
achieving the following two main objectives: (i)
exploring the combination of FL with real-life
computing technologies, (ii) estimating the
performance of FL on practical medical data, and
(iii) recommending new optimization strategies to
address such problems as heterogeneity of input
data, high communication costs, and converging
models. These research results support that FL has
the power to become a pillar in ethical, efficient,
and safe Al-based healthcare systems.

2. LITERATURE REVIEW

Federated Learning (FL) provides a paradigm shift
pertaining to the way machine learning models are
trained distributed over a variety of data sources.
In contrast to traditional centralized solutions, FL
implies coordination of the training across a
number of the client devices (e.g, multiple
hospitals or clinics, or personal wearables), by a
central server that has access to a global dataset.

All clients use the same model and only exchange
model changes (gradients or weights) to a server,
which on its side further combines them together,
usually by aggregation techniques such as
Federated Averaging (FedAvg). Extensions
including FedOpt, FedProx, and Scaffold have been
proposed to overcome such issues as non-I1ID data
distributions, partial client participation, and client
heterogeneity. In this decentralized scheme data
locality is preserved and privacy risks are reduced,
but at the same time collaborative intelligence
across institutions is made possible.

The convergence of Al in medical diagnostics has
informed itself with the increasing abilities of deep
learning in image classification, time-series study,
and pattern identification. Convolutional Neural
Networks (CNNs) have been proven so successful
in analysis of abnormalities in medical images like
MR], CT and X-ray scans, in diagnosing diseases
like pneumonia, brain tumors and diabetic eye
retinopathy  automatically. Also, structured
electronic health records (EHRs) hold the time and

class information applied in recurrent or
transformer-based models to forecast the
evolution and treatment effects. Although

centralized Al models have been shown to be very
accurate, they do not perform in privacy-sensitive
settings such as medical domains due to their
dependence on the sharing of data among different
institutions, which are out of compliance with
federal health information privacy rules (HIPAA)
or the General Data Protection Regulation (GDPR).
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In an effort to safeguard privacy in federated
systems, various cryptographic techniques, as well
as statistical techniques, have been incorporated in
FL workflows. Differential Privacy (DP) introduces
some mathematically bound noise to gradients or
model parameters prior to sharing, so that the
contribution of the individual cannot be
backtracked. With Homomorphic Encryption (HE),
computation can be done on actual encrypted data;
this ensures privacy in aggregation. Secure Multi-
party Computation (SMPC) allows joint computing
without accessing data submitted by individual
parties. Healthcare Fed Health, FedMedGAN and
FedCS were some of the studies that have looked
into the application of FL. Nevertheless, it
experiences issues of scaling across institutions,
model fairness in imbalanced data problems, and
computational limits on edge devices, which
implies the need to conduct more research to find
methods to optimize, validate, and explain
federated medical systems.

3. METHODOLOGY

3.1 System Architecture

The design of a federated learning (FL) scheme
that can be used to perform privacy-preserving
medical diagnosis is essentially distributed and is

comprised of two main parts, that is, a set of edge
clients and a central coordinating server. The data-
owning entities, eg hospital, diagnostic laboratory,
wearable health device network, or clinic each
have an edge client. The data which is stored by
these entities locally includes sensitive data
related to a patient like MRI/ CT images, sensor
readings of wearable devices or electronic health
records (EHRs). Rather than using central point
forcing all the data to some central location so that
the central machine learning model can be trained;
each client trains their local variant of the world-
wide model by feeding their internal data into it.

The core server, which can be operated by a
research consortium, government health
organization, or cloud operator, is only of a
coordinative nature. At every training cycle the
server sends all of the involved clients the current
incarnation of the global model. Then such clients
train locally on their own data with a specified
number of epochs and update the server with only
new model parameters or gradients. Notably, the
raw data is at no time accessible to the server. In
order to make them even more secure and privacy-
preserving the updates may be encrypted or
obscured via operators such as differential privacy
or homomorphic encryption prior to being sent.
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Figure 2. Federated Learning Architecture for Privacy-Preserving Medical Diagnosis

After the server has downloaded the updates of all
the clients or a sampled group of clients (based on
the available resources or network conditions), it
uses a secure aggregation algorithm to combine
the updates into a unified global model; in practice,
Federated Averaging (FedAvg) is the most
frequently used aggregation algorithm. This new
global model is then shared again to the clients to
undergo another round of training. This
distributed model learns patterns on many
iterations without breaking the concepts of data

locality or ownership, and converges over time. Its
architecture can be ascribed to asynchronous
training, client dropouts, and non-IID (non-
independent and identically distributed) data,
among others, and this is why it is robust and
scalable in heterogeneous medical settings. The
design makes it so that the sensitive healthcare
data is kept on-device presenting minimal attack
surface of data breaches and compliance with
privacy regulations like HIPAA, GDPR, and local
health data protection laws remain intact.
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3.2 Medical Use Case Scenarios

To show the practical usefulness of the Federated
Learning (FL) in real-life clinical applications, this
paper provides two federal medical use case
examples that compromise collaborative model
training in multiple institutions without suscepting
patient privacy including the lung cancer assay on
CT scans and diabetic retinopathy prediction on
fundus images of the retina. The reasons behind
selecting these scenarios are that the diseases
involved are critical, and the medical data that is
related to them is sensitive and would be of the
utmost benefit to undergo FL in which results
could be used to improve diagnosis performance
on an institutional level.

Use Case 1: Multi-Institutional Lung Cancer
Detection via CT Scans

Among the cancer causes of deaths, lung cancer is
still a common cause and early diagnosis of the
disease has proved effective in the treatment stage.
Chest computed tomography (CT) scan is a
popular diagnostic medicine that is used to
diagnose pulmonary nodules and the malignancy
of the nodules. Nevertheless, most hospitals and
imaging centers do not have the option to
exchange raw CT datasets because of privacy, legal,
ethical, and policy prohibitions. In the present case
scenario, the clients that take part in the FL
framework are the hospitals. The anonymized
datasets of CT scans are used to train the local
models on each institution based on convolutional
neural networks (CNNs), and utilize to classify
their images. These trained weights are updated
and sent to the central aggregator who uses them
to add them securely. With this process, an
efficient global model is built by successive rounds
of communication that progressively improves its
ability to detect early-stage lung cancer, and this is
achieved because of the diversity of the data in
different regions, imaging equipment, and patient

demographics, and, within this process, the data is
never transported beyond the source institution.

Use Case 2: Diabetic Retinopathy Prediction
Using Fundus Images

Diabetic retinopathy (DR) is a widespread reason
of adult loss of sight and blindness in patients with
long-standing  diabetes. = Automatic = Fundus
photography is also done regularly to screen DR
with grading of retinal images in order to image
lesions, microaneurysm and hemorrhage. In the
described use case of FL, retinal screening centers
and ophthalmologic clinics located in various
geographical locations cooperate to generate a
deep learning model in the classification of the
degree of DR. CNN-based classifier is trained on
the locally labeled fundus image dataset of each
center. Again the exchange is done only on the
model parameters but not the sensitive patient
data. FL is also beneficial from a DR Datasets
perspective because, since the disease stages
among the populations are not homogenous, it acts
a corrective to the tendency toward imbalances in
some DR Datasets. This decentralized learning
paradigm guarantees that local diagnostic
processes are not disrupted, accompanied by the
fact that the global model can be turned into a
powerful instrument that can become clinically
available in real time even in the regions where
high-quality ophthalmological providers are not
widely accessible.

The strength of FL in terms of increasing
innovation specifically in medical diagnostics sees
a clear application in several such use cases, as it
provides secure collaboration across different
institutions. They also point at the factor of how FL
can address the issue of privacy whilst still
improving accuracy of diagnosing thanks to the
access to a wider and more diverse range of data
sets, which is impossible when using the
centralized one-data-point learning paradigm.
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Figure 3. Use Case Scenarios of Federated Learning in Medical Diagnosis: Lung Cancer Detection and
Diabetic Retinopathy Prediction
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3.3 Privacy and Security Layer

In Federated Learning (FL) the raw localized data
resides on client devices or institutional servers
but the delivery of any model update (e.g. weights
or gradients) may leak sensitive information by
inference attacks such as model inversion, leakage
of gradients, or membership inference. In order to
reduce the risks and enhance privacy assurances
in vulnerable areas such with medical diagnosis, an
extra layer of privacy and security is incorporated
in the FL framework. This layer is usually a
combination of statistical privacy-preserving
schemes such as Differential privacy (DP) with
cryptographic schemes such as homomorphic
encryption or secure aggregation. The two popular
methods presently in use are considered below
namely: training local models with noise injection
via 2-Differential Privacy and gradient encryption
using the Paillier cryptosystem.

Local Model Training with Noise Injection (e-
Differential Privacy):

Differential Privacy (DP) is a mathematically sound
system that allows assuring that the insertion or

Edge Device

Local Model
Training

eDP\

Noise Injected

Gradients

removal of an individual data point (e.g., a patient
record) does not influence the output of a model
critically so that adversaries cannot make
inferences on individual contributions to the data.
Within the FL setting, this is done with local
differentially private, where noise is added to the
model gradients or weights prior to transmission
to the central server. Privacy budget, epsilon
(epsilon), (the degree of control of privacy
protection) specifies the intensity of privacy
protection where a lower epsilon offers better
privacy protection but with much noise that may
influence model accuracy. A Gaussian or Laplace
noise is normally put on the training rounds on the
gradient vectors. This randomized mechanism will
conceal the actual impact of any individual
samples thereby making it mathematically unlikely
in finding an attacker tracking the updates to
individual patient data. In medical applications of
FL, 2 is specifically tuned to find the trade-off
between privacy preservation and the usefulness
of the diagnoses.
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Figure 4. Privacy-Preserving Layers in Federated Learning: Differential Privacy and Homomorphic
Encryption Integration

Gradient Paillier
Cryptosystem

More to support privacy protection particularly
when making model updates during transmission
and aggregation, homomorphic encryption
protocols such as Paillier cryptosystem may be
used. Paillier encryption algorithm is additive
homomorphic, thus, the addition of encrypted
values is possible without decryption to yield a
valid encrypted value. Within the FL environment,
a given client encrypts its gradient vectors prior to
sending them. It will be the job of the central
aggregator to do the appropriate aggregation (e.g.,

Encryption using
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sum of gradients) over ciphertexts without
decryption any of them. The finishing step is the
decryption of the final output by a set of keys that
only a trusted or a secure enclave would know.
This guarantees that no interim computation of the
gradients is exposed (nor can back-engineer client-
specific updates). Also, the update is encrypted and
not susceptible to eavesdropping, man-in-the-
middle attacks and untrustworthy server activities,
which increases the degree to which trust is placed
in reciprocal multi-institutional engagements.

A combination of differential privacy and
homomorphic encryption creates a two-layered
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privacy protection in FL, and, therefore, it becomes
a safe and practical approach to machine learning
model training using sensitive healthcare data.
Such tiered protection architecture supports
collaborative innovation without breaking the
rules of strict data protection regulations such as
HIPAA, GDPR, and medical ethics initiatives.

3.4 Optimization Techniques

Client heterogeneity, non-IID data distribution,
different device capabilities and communication
bottlenecks are some of the common issues that
limit the efficiency of the Federated Learning (FL)
systems. To address convergence, robustness and
efficlency a variety of optimization algorithms
have been suggested, most notably, methods that
focus on training stability and resource-conscious
participation. Adaptive learning rates and smart
client selection strategies are two of such
techniques that are vital in healthcare-oriented FL
deployments.

Adaptive Learning Rates in FL

The traditional fixed rate may be enough since
there is a preventable information dispersion and
homogenous resource distribution in the
conventional centralized learning. A heterogeneity
in data and compute environment is however
brought in by FL. The distribution of datasets used
by clients can be widely different (non- I1ID), and
this will result in noisy or even biased updates.
Also, not all of the clients will be able to spend as
many epochs as possible as they have limited
energy sources or have connectivity problems. To
overcome these issues, adaptive learning rates (as
in FedAdam or FedYogi or personalized learning
systems) alter the local learning rate multiple
times to depend on gradient variance, update
frequency, or convergence rate.

As an example, quite variable gradient direction
clients could minimize their learning rate as a
means of stabilizing training whereas more stable
clients could boost learning with greater rates.
Adaptive techniques (e.g. server-side FedAdagrad)
may also be applied to global optimization to place
more weight on updates by trusted clients. This
decreases the fluctuations in convergence and
speeds up training, yet it is fair. Adaptive learning
may be used in the medical diagnosis scenario
where data imbalance (e.g. rare classes of

diseases) and overfitting are typical issues to
ensure that the model does not diverge and exhibit
poor generalization to a population of different
patients.

Client Selection Strategies

With the edge devices availability being
discontinuous in FL, having the right subset of the
clients during each round of training is essential
both in terms of performance and scalability due to
the high cost associated with communication.
Naive random sampling can sample unreliable or
low performing clients, which will make the
convergence slow, and the inefficient utilization of
resources. To overcome these limitations advanced
selection algorithms like Oort and clustered FL
have been proposed.

Oort is another strategy of utility-based selection
where clients are ranked according to a
combination of variables including the quality of
data, the potential gain to the model, the speed of
the system as well as reliability of the system. It
dynamically prioritises clients based on a
rewarding function and chooses the ones that are
likely to build most towards the global
convergence. QOort performs best in a
heterogeneous mobile or healthcare network
where the client dropout may frequently occur.
Clustered Federated Learning gathers clients in
similar data groups depending on their
assignments of features or data and trains a
distinct model inside every group, then the models
are merged in a hierarchy. This minimizes the
deviation due to non-IID data and has the
capability of increasing performance in multi-site
scenarios relative to a single hospital, such as for
different patient demographics or imaging types.
Clustered FL also allows creating custom-made
models that fit a particular domain of data as well
as adding to a collective knowledge base.

Adaptive learning rates and efficient client
selection work hand in hand to foster scalable and
efficient federated learning implementations that
are precise and do not require extensive resources,
particularly in the settings where privacy is
prioritized (e.g. healthcare). These methods make
sure that federated training is resistant to real-
world variabilities and they ensure consistency
with clinical objectives to time and reliability of
diagnosis.
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Figure 5. Optimization Strategies in Federated Learning: Adaptive Learning Rates and Client Selection
Techniques

4. RESULTS AND DISCUSSION

To analyse the characteristics of the suggested
Federated Learning (FL) framework regarding the
privacy-preserving medical diagnosis, we have
performed comparative experiments on four
training models, (i) centralized model with pooled
data, (ii) vanilla FL model with FedAvg, (iii) FL
with added Differential Privacy (FL + DP), (iv) FL
with added Differential Privacy and Homomorphic
Encryption (FL + DP + HE). The findings presented
in Table X show that there is an evident trade off
between the accuracy of the model and privacy
preservation. The most accurate model (93.2%)
was the centralized one with the F1-score of 0.91;

Score / Level

Centralized FL (FedAvg)

it has complete access to all data experiences low
latency. But it suffers overload on privacy loss ( 0 =
0 ), and this indicates that it is not suitable in
sensitive areas such as medical. FedAvg with FL on
the other hand experienced a relatively lower
performance (accuracy: 91.1%, F1-score: 0.89) but
with considerably better privacy achieved by
ensuring the raw data is not in any way
transferred to the outside world and is instead run
locally. Incorporation of DP also further decreased
the leakage of privacy to 1.2 and had a negligible
effect on the accuracy (89.5) and F1-score (0.87)
which is a great trade-off in terms of model utility
and privacy.

Accuracy (%)
. Fl-Score (%)
Privacy Loss (&)
mmm Comm. Overhead (Ordinal)

FL + DP FL + DP + HE

Model Configuration

Figure 5. Performance and Privacy Trade-offs in Federated Learning Configurations

Loss of privacy on applications of both DP and
Homomorphic Encryption (HE) was measured
below 1.0 that shows strong resistance to gradient
leakage and adversarial inference. This was
however at the expense of both greater
communication overhead and slightly decreased
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accuracy (88.3%) and F1-score (0.85) which may
be caused by the noise of gradient calculations and
the latency of encryption procedures. ROC trends
indicated that the FL models persistently exhibited
good discriminative behavior, especially in case of
early-stage cancer and retinopathy modalities.
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Plots of convergence pointed at slower, however
more stable dynamics of training in privacy-
enhanced environments. Confusion matrices also
demonstrated that there was also a marginally
greater false positives with the FL + DP + HE but
the score is still clinically acceptable. To conclude,
the findings confirm the idea that, when fitted well

and using a privacy system, the FL systems can
achieve near-centralized performance with a
strong privacy guarantee. It makes FL a viable
strategy with high potential of being applied to
real world applications of privacy sensitive
medical Al systems in decentralized systems.

Table 1. Comparison of Model Accuracy, Privacy Loss, Communication Overhead, and F1-Score across

Configurations
Model Accuracy | Privacy Loss | Communication F1-
(g) Overhead Score

Centralized | 93.2% 00 Low 0.91
FL (FedAvg) | 91.1% 3.5 High 0.89
FL + DP 89.5% 1.2 Moderate 0.87
FL + DP + | 88.3% <1.0 Higher 0.85
HE

5. Challenges and Future Directions

Although Federated Learning (FL) provides good
results and makes the diagnosis of the problem
rather convenient due to the privacy advantages,
there are still some issues to be solved to allow
deploying it in the real clinical setups on a large
scale. Among them is processing non-IID (non-
independent and identically distributed) data
because the data on patients and imaging features
may differ dramatically based on the specific
hospital due to differences in demographics,
differences in procedures, differences in imaging
equipment. Such heterogeneity of the data may
give biased or poor learning updates of the models,
thus may affect the convergence and
generalization. The other problem that is
important is the communication bottleneck that is
usually a problem when there is frequent exchange
of model parameters particularly in the event of
unreliable or bandwidth-constrained mobile
networks common in remote or rural healthcare
facilities. Also, personalized federated learning
methods that align the world models with the
distinct, individual data distributions of clients are
increasingly relevant and finding applications,
though the methods do not reduce collaborative
benefits. The synergy between FL and transfer
learning should also be studied in future research
to allow cross-domain adaptation and zero-shot
diagnostics in which models are generalized to
new tasks or rare diseases with little or no new
training data. Lastly, a combination of FL and
blockchain can augment the levels of auditability,
accountability and traceability of model updates,
so federated systems are so trustworthy due to
transparent logging of client contributions and
secure consensuses. These guidelines will play a
vital role towards ensuring that FL be developed
into  scalable, dependable, and ethically

responsible basis of the next-generation medical Al
systems.

6. CONCLUSION

This work demonstrates Federated Learning (FL)
as the paradigm that can transform and actualize
the secure, scalable, and high-accuracy of medical
diagnostics in future computing systems. FL
resolves these privacy and compliance issues by
allowing decentralized training in hospitals, clinics,
and wearable devices, so no sensitive information
is transferred. FL also helps to overcome the
privacy and compliance issues specific to all
traditional centralized machine learning systems
by allowing decentralization, such as to the cloud,
hospitals, clinics, and wearable devices, without
leaking any sensitive data. By incorporating
privacy systems like differential privacy and
homomorphic encryption into it, the proposed
architecture is capable of achieving high levels of
performance with regard to diagnostics and
drastically reduce the possibility of exposed data
leaks. CT scans and fundus images represent real-
world experimental datasets that were used to
assess the effectiveness of FL models, which have
been shown to be easily comparable to centralized
models in some cases, providing the same overall
effectiveness and benefits of patient privacy and
inter-institutional collaboration. Client selection
and adaptive learning rates are classed as
optimization strategies that drive efficiency and
convergence of the federated training process
further. Moving forward, the adaptability and
explainability of personalized FL, federated
transfer learning, and explainable Al will improve
in the clinical context since future advancements in
personalized FL, federated transfer, and
explainable Al will improve their interpretability.
Furthermore, the implementation of the
blockchain technologies may offer immutable and
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transparent audit trails, which will increase the
confidence of multi-party diagnostics systems. In
sum, this article prepares the path to ethically
acceptable, intelligent and distributed Al whose

development

can transform the future of

healthcare delivery and decision-making.
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