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 As a new paradigm of decentralized artificial intelligence (AI), federated 
learning (FL) has taken the form of a revolution to deal with privacy of 
the data and efficiency of computational methods in contemporary 
applications. When compared to the conventional centralized machine 
learning techniques that necessitate the raw data to be relayed to a 
centralized server, FL allows cooperative model training on edge 
devices (e.g., smart phones, IoT-enabled sensors, and institutional 
servers) and never loses sensitive data. In this paper, the author 
examines how FL is integrated into the next generation of computing 
paradigm, i.e., edge computing, 6G-supported ultra-low latency 
communication, quantum-enhanced optimization to reach faster 
convergence, and AI accelerators to enable real-time inference on the 
edge. Much emphasis is made on using FL in such area as privacy-
preserving medical diagnosis, which is still highly sensitive as there are 
severe regulatory and ethical issues on patient data. The paper engages 
in a complex investigation of the privacy-preserving methods which 
enlist the use of secure aggregation schemes, differential privacy 
schemes, and homomorphic encryption, that will in turn work to make 
the model resilient without violating privacy of individuals. Besides, the 
approaches to optimizing the models in terms of working with non-IID 
data and communication bottlenecks, as well as heterogeneity among 
the client devices, are discussed. Experimental testing is done on a 
variety of multi-institutional data consisting of medical imaging (CT 
scans, X-rays), wearable diagnostic sensors, and structured electronic 
health records (EHRs). Findings demonstrate that properly configured 
and private-sensitive layers allow the FL-based architectures to reach 
diagnosis accuracy similar to centralized models to drastically minimize 
the privacy risk and communication overhead. Additionally, 
performance measures such as accuracy, F1-score, AUC, and privacy 
leakage approximations affirm that FL provides a reasonable solution to 
sensitive and real-life application in the medical domain of AI. This 
contribution presents the prospects of FL as a foundational technology 
in next-gen computing systems and preconditions the formulation of 
subsequent works in the field of federated neuro-symbolic modeling, 
the blockchain-based system of audit trails, and explainable federated 
AI that complies with the standards of ethical AI implementation. 
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1. INTRODUCTION 
The healthcare sector in recent years experienced 
an unparalleled increase in the number of the data 
acquired with various sources, including wearable 
health trackers, medical imaging systems, 
electronic health records (EHRs), and remote 
patient monitoring systems. These data streams 
hold immense possibilities of opening new 
horizons of intelligent diagnostics approaches, the 
predictions of disease structures and customised 
treatment plans. The exploitation of such sensitive 
health data with traditional centralized machine 
learning (ML) frameworks however poses serious 

questions surrounding patient privacy, data 
ownership, as well as compliance with regulations. 
Centralized systems demand that the data is 
gathered and kept on a central server, and hence 
have an only one place of vulnerability that could 
result in information breach, mishandling, or 
failure to comply with confidentiality policies like 
HIPAA, GDPR, and the DISHA guidelines in India. 
In order to mitigate these issues, FL has come as a 
revolutionary framework of distributed AI. In 
contrast with conventional ML methods, in FL, the 
training of models can be done over a network of 
distributed devices or sets of data silos (e.g. 
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hospitals, clinics or individual devices) without 
actually transferring raw data out of its source. 
Every node locally trains and encryptically 
exchanges model updates with a centralized 
aggregator node and thus achieves data privacy 
but can still contribute towards a global model. 

Such a privacy-by-design strategy is especially 
important in the area of medical diagnostics since 
data there is highly sensitive, and trans-
institutional data exchange must be often 
restricted by the laws and ethical concerns. 

 

 
Figure 1. Federated Learning Framework for Privacy-Preserving Medical Diagnosis 

 
In a future environment of plated outward third-
generation computing systems, such as cloud 
computing or 6G supported low-latency or 
heterogeneous networks and edge leisure 
surroundings, a quantum-aided optimization, or 
gadget accelerators forming the AI, there is a 
strong argument to be manufactured about how 
significant the side of FL is. Based on the 
combination of FL and generators of secure, but 
inefficient, computation, namely differential 
privacy and homomorphic encryption, the 
proposed privacy-preserving medical diagnosis 
model is strong and scalable. This work aims at 
achieving the following two main objectives: (i) 
exploring the combination of FL with real-life 
computing technologies, (ii) estimating the 
performance of FL on practical medical data, and 
(iii) recommending new optimization strategies to 
address such problems as heterogeneity of input 
data, high communication costs, and converging 
models. These research results support that FL has 
the power to become a pillar in ethical, efficient, 
and safe AI-based healthcare systems. 
 
2. LITERATURE REVIEW 
Federated Learning (FL) provides a paradigm shift 
pertaining to the way machine learning models are 
trained distributed over a variety of data sources. 
In contrast to traditional centralized solutions, FL 
implies coordination of the training across a 
number of the client devices (e.g., multiple 
hospitals or clinics, or personal wearables), by a 
central server that has access to a global dataset. 

All clients use the same model and only exchange 
model changes (gradients or weights) to a server, 
which on its side further combines them together, 
usually by aggregation techniques such as 
Federated Averaging (FedAvg). Extensions 
including FedOpt, FedProx, and Scaffold have been 
proposed to overcome such issues as non-IID data 
distributions, partial client participation, and client 
heterogeneity. In this decentralized scheme data 
locality is preserved and privacy risks are reduced, 
but at the same time collaborative intelligence 
across institutions is made possible. 
The convergence of AI in medical diagnostics has 
informed itself with the increasing abilities of deep 
learning in image classification, time-series study, 
and pattern identification. Convolutional Neural 
Networks (CNNs) have been proven so successful 
in analysis of abnormalities in medical images like 
MRI, CT and X-ray scans, in diagnosing diseases 
like pneumonia, brain tumors and diabetic eye 
retinopathy automatically. Also, structured 
electronic health records (EHRs) hold the time and 
class information applied in recurrent or 
transformer-based models to forecast the 
evolution and treatment effects. Although 
centralized AI models have been shown to be very 
accurate, they do not perform in privacy-sensitive 
settings such as medical domains due to their 
dependence on the sharing of data among different 
institutions, which are out of compliance with 
federal health information privacy rules (HIPAA) 
or the General Data Protection Regulation (GDPR). 
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In an effort to safeguard privacy in federated 
systems, various cryptographic techniques, as well 
as statistical techniques, have been incorporated in 
FL workflows. Differential Privacy (DP) introduces 
some mathematically bound noise to gradients or 
model parameters prior to sharing, so that the 
contribution of the individual cannot be 
backtracked. With Homomorphic Encryption (HE), 
computation can be done on actual encrypted data; 
this ensures privacy in aggregation. Secure Multi-
party Computation (SMPC) allows joint computing 
without accessing data submitted by individual 
parties. Healthcare Fed Health, FedMedGAN and 
FedCS were some of the studies that have looked 
into the application of FL. Nevertheless, it 
experiences issues of scaling across institutions, 
model fairness in imbalanced data problems, and 
computational limits on edge devices, which 
implies the need to conduct more research to find 
methods to optimize, validate, and explain 
federated medical systems. 
 
3. METHODOLOGY 
3.1 System Architecture 
The design of a federated learning (FL) scheme 
that can be used to perform privacy-preserving 
medical diagnosis is essentially distributed and is 

comprised of two main parts, that is, a set of edge 
clients and a central coordinating server. The data-
owning entities, eg hospital, diagnostic laboratory, 
wearable health device network, or clinic each 
have an edge client. The data which is stored by 
these entities locally includes sensitive data 
related to a patient like MRI/ CT images, sensor 
readings of wearable devices or electronic health 
records (EHRs). Rather than using central point 
forcing all the data to some central location so that 
the central machine learning model can be trained; 
each client trains their local variant of the world-
wide model by feeding their internal data into it. 
The core server, which can be operated by a 
research consortium, government health 
organization, or cloud operator, is only of a 
coordinative nature. At every training cycle the 
server sends all of the involved clients the current 
incarnation of the global model. Then such clients 
train locally on their own data with a specified 
number of epochs and update the server with only 
new model parameters or gradients. Notably, the 
raw data is at no time accessible to the server. In 
order to make them even more secure and privacy-
preserving the updates may be encrypted or 
obscured via operators such as differential privacy 
or homomorphic encryption prior to being sent. 

 

 
Figure 2. Federated Learning Architecture for Privacy-Preserving Medical Diagnosis 

 
After the server has downloaded the updates of all 
the clients or a sampled group of clients (based on 
the available resources or network conditions), it 
uses a secure aggregation algorithm to combine 
the updates into a unified global model; in practice, 
Federated Averaging (FedAvg) is the most 
frequently used aggregation algorithm. This new 
global model is then shared again to the clients to 
undergo another round of training. This 
distributed model learns patterns on many 
iterations without breaking the concepts of data 

locality or ownership, and converges over time. Its 
architecture can be ascribed to asynchronous 
training, client dropouts, and non-IID (non-
independent and identically distributed) data, 
among others, and this is why it is robust and 
scalable in heterogeneous medical settings. The 
design makes it so that the sensitive healthcare 
data is kept on-device presenting minimal attack 
surface of data breaches and compliance with 
privacy regulations like HIPAA, GDPR, and local 
health data protection laws remain intact. 
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3.2 Medical Use Case Scenarios 
To show the practical usefulness of the Federated 
Learning (FL) in real-life clinical applications, this 
paper provides two federal medical use case 
examples that compromise collaborative model 
training in multiple institutions without suscepting 
patient privacy including the lung cancer assay on 
CT scans and diabetic retinopathy prediction on 
fundus images of the retina. The reasons behind 
selecting these scenarios are that the diseases 
involved are critical, and the medical data that is 
related to them is sensitive and would be of the 
utmost benefit to undergo FL in which results 
could be used to improve diagnosis performance 
on an institutional level. 
 
Use Case 1: Multi-Institutional Lung Cancer 
Detection via CT Scans 
Among the cancer causes of deaths, lung cancer is 
still a common cause and early diagnosis of the 
disease has proved effective in the treatment stage. 
Chest computed tomography (CT) scan is a 
popular diagnostic medicine that is used to 
diagnose pulmonary nodules and the malignancy 
of the nodules. Nevertheless, most hospitals and 
imaging centers do not have the option to 
exchange raw CT datasets because of privacy, legal, 
ethical, and policy prohibitions. In the present case 
scenario, the clients that take part in the FL 
framework are the hospitals. The anonymized 
datasets of CT scans are used to train the local 
models on each institution based on convolutional 
neural networks (CNNs), and utilize to classify 
their images. These trained weights are updated 
and sent to the central aggregator who uses them 
to add them securely. With this process, an 
efficient global model is built by successive rounds 
of communication that progressively improves its 
ability to detect early-stage lung cancer, and this is 
achieved because of the diversity of the data in 
different regions, imaging equipment, and patient 

demographics, and, within this process, the data is 
never transported beyond the source institution. 
 
Use Case 2: Diabetic Retinopathy Prediction 
Using Fundus Images 
Diabetic retinopathy (DR) is a widespread reason 
of adult loss of sight and blindness in patients with 
long-standing diabetes. Automatic Fundus 
photography is also done regularly to screen DR 
with grading of retinal images in order to image 
lesions, microaneurysm and hemorrhage. In the 
described use case of FL, retinal screening centers 
and ophthalmologic clinics located in various 
geographical locations cooperate to generate a 
deep learning model in the classification of the 
degree of DR. CNN-based classifier is trained on 
the locally labeled fundus image dataset of each 
center. Again the exchange is done only on the 
model parameters but not the sensitive patient 
data. FL is also beneficial from a DR Datasets 
perspective because, since the disease stages 
among the populations are not homogenous, it acts 
a corrective to the tendency toward imbalances in 
some DR Datasets. This decentralized learning 
paradigm guarantees that local diagnostic 
processes are not disrupted, accompanied by the 
fact that the global model can be turned into a 
powerful instrument that can become clinically 
available in real time even in the regions where 
high-quality ophthalmological providers are not 
widely accessible. 
The strength of FL in terms of increasing 
innovation specifically in medical diagnostics sees 
a clear application in several such use cases, as it 
provides secure collaboration across different 
institutions. They also point at the factor of how FL 
can address the issue of privacy whilst still 
improving accuracy of diagnosing thanks to the 
access to a wider and more diverse range of data 
sets, which is impossible when using the 
centralized one-data-point learning paradigm. 

 

 
Figure 3. Use Case Scenarios of Federated Learning in Medical Diagnosis: Lung Cancer Detection and 

Diabetic Retinopathy Prediction 
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3.3 Privacy and Security Layer 
In Federated Learning (FL) the raw localized data 
resides on client devices or institutional servers 
but the delivery of any model update (e.g. weights 
or gradients) may leak sensitive information by 
inference attacks such as model inversion, leakage 
of gradients, or membership inference. In order to 
reduce the risks and enhance privacy assurances 
in vulnerable areas such with medical diagnosis, an 
extra layer of privacy and security is incorporated 
in the FL framework. This layer is usually a 
combination of statistical privacy-preserving 
schemes such as Differential privacy (DP) with 
cryptographic schemes such as homomorphic 
encryption or secure aggregation. The two popular 
methods presently in use are considered below 
namely: training local models with noise injection 
via 2-Differential Privacy and gradient encryption 
using the Paillier cryptosystem. 
 
Local Model Training with Noise Injection (ε-
Differential Privacy): 
Differential Privacy (DP) is a mathematically sound 
system that allows assuring that the insertion or 

removal of an individual data point (e.g., a patient 
record) does not influence the output of a model 
critically so that adversaries cannot make 
inferences on individual contributions to the data. 
Within the FL setting, this is done with local 
differentially private, where noise is added to the 
model gradients or weights prior to transmission 
to the central server. Privacy budget, epsilon 
(epsilon), (the degree of control of privacy 
protection) specifies the intensity of privacy 
protection where a lower epsilon offers better 
privacy protection but with much noise that may 
influence model accuracy. A Gaussian or Laplace 
noise is normally put on the training rounds on the 
gradient vectors. This randomized mechanism will 
conceal the actual impact of any individual 
samples thereby making it mathematically unlikely 
in finding an attacker tracking the updates to 
individual patient data. In medical applications of 
FL, 2 is specifically tuned to find the trade-off 
between privacy preservation and the usefulness 
of the diagnoses. 

 

 
Figure 4. Privacy-Preserving Layers in Federated Learning: Differential Privacy and Homomorphic 

Encryption Integration 
 
Gradient Encryption using Paillier 
Cryptosystem 
More to support privacy protection particularly 
when making model updates during transmission 
and aggregation, homomorphic encryption 
protocols such as Paillier cryptosystem may be 
used. Paillier encryption algorithm is additive 
homomorphic, thus, the addition of encrypted 
values is possible without decryption to yield a 
valid encrypted value. Within the FL environment, 
a given client encrypts its gradient vectors prior to 
sending them. It will be the job of the central 
aggregator to do the appropriate aggregation (e.g., 

sum of gradients) over ciphertexts without 
decryption any of them. The finishing step is the 
decryption of the final output by a set of keys that 
only a trusted or a secure enclave would know. 
This guarantees that no interim computation of the 
gradients is exposed (nor can back-engineer client-
specific updates). Also, the update is encrypted and 
not susceptible to eavesdropping, man-in-the-
middle attacks and untrustworthy server activities, 
which increases the degree to which trust is placed 
in reciprocal multi-institutional engagements. 
A combination of differential privacy and 
homomorphic encryption creates a two-layered 
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privacy protection in FL, and, therefore, it becomes 
a safe and practical approach to machine learning 
model training using sensitive healthcare data. 
Such tiered protection architecture supports 
collaborative innovation without breaking the 
rules of strict data protection regulations such as 
HIPAA, GDPR, and medical ethics initiatives. 
 
3.4 Optimization Techniques 
Client heterogeneity, non-IID data distribution, 
different device capabilities and communication 
bottlenecks are some of the common issues that 
limit the efficiency of the Federated Learning (FL) 
systems. To address convergence, robustness and 
efficiency a variety of optimization algorithms 
have been suggested, most notably, methods that 
focus on training stability and resource-conscious 
participation. Adaptive learning rates and smart 
client selection strategies are two of such 
techniques that are vital in healthcare-oriented FL 
deployments. 
 
Adaptive Learning Rates in FL 
The traditional fixed rate may be enough since 
there is a preventable information dispersion and 
homogenous resource distribution in the 
conventional centralized learning. A heterogeneity 
in data and compute environment is however 
brought in by FL. The distribution of datasets used 
by clients can be widely different (non- IID), and 
this will result in noisy or even biased updates. 
Also, not all of the clients will be able to spend as 
many epochs as possible as they have limited 
energy sources or have connectivity problems. To 
overcome these issues, adaptive learning rates (as 
in FedAdam or FedYogi or personalized learning 
systems) alter the local learning rate multiple 
times to depend on gradient variance, update 
frequency, or convergence rate. 
As an example, quite variable gradient direction 
clients could minimize their learning rate as a 
means of stabilizing training whereas more stable 
clients could boost learning with greater rates. 
Adaptive techniques (e.g. server-side FedAdagrad) 
may also be applied to global optimization to place 
more weight on updates by trusted clients. This 
decreases the fluctuations in convergence and 
speeds up training, yet it is fair. Adaptive learning 
may be used in the medical diagnosis scenario 
where data imbalance (e.g. rare classes of 

diseases) and overfitting are typical issues to 
ensure that the model does not diverge and exhibit 
poor generalization to a population of different 
patients. 
 
Client Selection Strategies 
With the edge devices availability being 
discontinuous in FL, having the right subset of the 
clients during each round of training is essential 
both in terms of performance and scalability due to 
the high cost associated with communication. 
Naive random sampling can sample unreliable or 
low performing clients, which will make the 
convergence slow, and the inefficient utilization of 
resources. To overcome these limitations advanced 
selection algorithms like Oort and clustered FL 
have been proposed. 
Oort is another strategy of utility-based selection 
where clients are ranked according to a 
combination of variables including the quality of 
data, the potential gain to the model, the speed of 
the system as well as reliability of the system. It 
dynamically prioritises clients based on a 
rewarding function and chooses the ones that are 
likely to build most towards the global 
convergence. Oort performs best in a 
heterogeneous mobile or healthcare network 
where the client dropout may frequently occur. 
Clustered Federated Learning gathers clients in 
similar data groups depending on their 
assignments of features or data and trains a 
distinct model inside every group, then the models 
are merged in a hierarchy. This minimizes the 
deviation due to non-IID data and has the 
capability of increasing performance in multi-site 
scenarios relative to a single hospital, such as for 
different patient demographics or imaging types. 
Clustered FL also allows creating custom-made 
models that fit a particular domain of data as well 
as adding to a collective knowledge base. 
Adaptive learning rates and efficient client 
selection work hand in hand to foster scalable and 
efficient federated learning implementations that 
are precise and do not require extensive resources, 
particularly in the settings where privacy is 
prioritized (e.g. healthcare). These methods make 
sure that federated training is resistant to real-
world variabilities and they ensure consistency 
with clinical objectives to time and reliability of 
diagnosis. 
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Figure 5. Optimization Strategies in Federated Learning: Adaptive Learning Rates and Client Selection 

Techniques 
 
4. RESULTS AND DISCUSSION 
To analyse the characteristics of the suggested 
Federated Learning (FL) framework regarding the 
privacy-preserving medical diagnosis, we have 
performed comparative experiments on four 
training models, (i) centralized model with pooled 
data, (ii) vanilla FL model with FedAvg, (iii) FL 
with added Differential Privacy (FL + DP), (iv) FL 
with added Differential Privacy and Homomorphic 
Encryption (FL + DP + HE). The findings presented 
in Table X show that there is an evident trade off 
between the accuracy of the model and privacy 
preservation. The most accurate model (93.2%) 
was the centralized one with the F1-score of 0.91; 

it has complete access to all data experiences low 
latency. But it suffers overload on privacy loss ( 0 = 
0 ), and this indicates that it is not suitable in 
sensitive areas such as medical. FedAvg with FL on 
the other hand experienced a relatively lower 
performance (accuracy: 91.1%, F1-score: 0.89) but 
with considerably better privacy achieved by 
ensuring the raw data is not in any way 
transferred to the outside world and is instead run 
locally. Incorporation of DP also further decreased 
the leakage of privacy to 1.2 and had a negligible 
effect on the accuracy (89.5) and F1-score (0.87) 
which is a great trade-off in terms of model utility 
and privacy. 

 

 
Figure 5. Performance and Privacy Trade-offs in Federated Learning Configurations 

 
Loss of privacy on applications of both DP and 
Homomorphic Encryption (HE) was measured 
below 1.0 that shows strong resistance to gradient 
leakage and adversarial inference. This was 
however at the expense of both greater 
communication overhead and slightly decreased 

accuracy (88.3%) and F1-score (0.85) which may 
be caused by the noise of gradient calculations and 
the latency of encryption procedures. ROC trends 
indicated that the FL models persistently exhibited 
good discriminative behavior, especially in case of 
early-stage cancer and retinopathy modalities. 
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Plots of convergence pointed at slower, however 
more stable dynamics of training in privacy-
enhanced environments. Confusion matrices also 
demonstrated that there was also a marginally 
greater false positives with the FL + DP + HE but 
the score is still clinically acceptable. To conclude, 
the findings confirm the idea that, when fitted well 

and using a privacy system, the FL systems can 
achieve near-centralized performance with a 
strong privacy guarantee. It makes FL a viable 
strategy with high potential of being applied to 
real world applications of privacy sensitive 
medical AI systems in decentralized systems. 

 
Table 1. Comparison of Model Accuracy, Privacy Loss, Communication Overhead, and F1-Score across 

Configurations 
Model Accuracy Privacy Loss 

(ε) 
Communication 
Overhead 

F1-
Score 

Centralized 93.2% ∞ Low 0.91 

FL (FedAvg) 91.1% 3.5 High 0.89 

FL + DP 89.5% 1.2 Moderate 0.87 

FL + DP + 
HE 

88.3% <1.0 Higher 0.85 

 
5. Challenges and Future Directions 
Although Federated Learning (FL) provides good 
results and makes the diagnosis of the problem 
rather convenient due to the privacy advantages, 
there are still some issues to be solved to allow 
deploying it in the real clinical setups on a large 
scale. Among them is processing non-IID (non-
independent and identically distributed) data 
because the data on patients and imaging features 
may differ dramatically based on the specific 
hospital due to differences in demographics, 
differences in procedures, differences in imaging 
equipment. Such heterogeneity of the data may 
give biased or poor learning updates of the models, 
thus may affect the convergence and 
generalization. The other problem that is 
important is the communication bottleneck that is 
usually a problem when there is frequent exchange 
of model parameters particularly in the event of 
unreliable or bandwidth-constrained mobile 
networks common in remote or rural healthcare 
facilities. Also, personalized federated learning 
methods that align the world models with the 
distinct, individual data distributions of clients are 
increasingly relevant and finding applications, 
though the methods do not reduce collaborative 
benefits. The synergy between FL and transfer 
learning should also be studied in future research 
to allow cross-domain adaptation and zero-shot 
diagnostics in which models are generalized to 
new tasks or rare diseases with little or no new 
training data. Lastly, a combination of FL and 
blockchain can augment the levels of auditability, 
accountability and traceability of model updates, 
so federated systems are so trustworthy due to 
transparent logging of client contributions and 
secure consensuses. These guidelines will play a 
vital role towards ensuring that FL be developed 
into scalable, dependable, and ethically 

responsible basis of the next-generation medical AI 
systems. 
 
6. CONCLUSION 
This work demonstrates Federated Learning (FL) 
as the paradigm that can transform and actualize 
the secure, scalable, and high-accuracy of medical 
diagnostics in future computing systems. FL 
resolves these privacy and compliance issues by 
allowing decentralized training in hospitals, clinics, 
and wearable devices, so no sensitive information 
is transferred. FL also helps to overcome the 
privacy and compliance issues specific to all 
traditional centralized machine learning systems 
by allowing decentralization, such as to the cloud, 
hospitals, clinics, and wearable devices, without 
leaking any sensitive data. By incorporating 
privacy systems like differential privacy and 
homomorphic encryption into it, the proposed 
architecture is capable of achieving high levels of 
performance with regard to diagnostics and 
drastically reduce the possibility of exposed data 
leaks. CT scans and fundus images represent real-
world experimental datasets that were used to 
assess the effectiveness of FL models, which have 
been shown to be easily comparable to centralized 
models in some cases, providing the same overall 
effectiveness and benefits of patient privacy and 
inter-institutional collaboration. Client selection 
and adaptive learning rates are classed as 
optimization strategies that drive efficiency and 
convergence of the federated training process 
further. Moving forward, the adaptability and 
explainability of personalized FL, federated 
transfer learning, and explainable AI will improve 
in the clinical context since future advancements in 
personalized FL, federated transfer, and 
explainable AI will improve their interpretability. 
Furthermore, the implementation of the 
blockchain technologies may offer immutable and 



   18 Electronics, Communications, and Computing Summit | Apr - Jun 2024 

 

Prerna Dusi et al / Federated Learning for Next-Gen Computing Applications and Privacy-Preserving 
Medical Diagnosis 

 

 
 

transparent audit trails, which will increase the 
confidence of multi-party diagnostics systems. In 
sum, this article prepares the path to ethically 
acceptable, intelligent and distributed AI whose 
development can transform the future of 
healthcare delivery and decision-making. 
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