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The increasing levels of sophistication in the VERY-LARGE-SCALE
INTEGRATION (VLSI) demands progressive automation techniques that
can outdo the traditional heuristic-based methods. The research paper
presents a modular enhanced design with intelligent architecture to
incorporate machine learning (ML) at various phases of electronic
design automation (EDA) process. Namely, reinforcement learning (RL)
is applied to adaptive floor planning and placement, the convolutional
neural networks (CNNs) aid locating the key layout patterns, and the
gradient-boosted decision trees (GBDT) allow one to precisely estimate
the power and delays. The proposed system than a static design flow
provides continual learning throughout the iterative design iteration
process, and enables a progressive refinement of performance.
Experimental results to standard VLSI benchmarks, such as ISCAS-85,
MCNC, and Open Cores show up 42 percent fewer time to closure a
design, an 18 percent lesser power use, and much more remarkable
time yield bettering when compared to baseline EDA applications. The
findings point to the smart exploration of power, performance, and area
(PPA) trade-offs with a strong time-to-market requirement. Moreover,
its modular design guarantees the easy portability in ASIC and FPGA
design implementations. In general, the method provides a framework
of the next generation, Al-aided VLSI design and automation, which is
both performance-sensitive and application-scalable.

1. INTRODUCTION

As the semiconductor industry has reached

of the EDA flow. Nevertheless, the body of current
works in this field tends to concern itself with

advanced semiconductor technology nodes (e.g.,
5nm and below) and as more and more
heterogeneous system-on-chip (SoC) designs are
being integrated, the classic rule-based electronic
design automation (EDA) flow is finding itself
unable to cope with the ever more demanding
power, performance and area (PPA) constraints of
modern VLSI IC designs. These traditional methods
usually make use of handcrafted heuristics, which
does not scale, flexible enough to deal with
increasing design complexity, variety in process,
and time to market. Because of this, intelligent and
data-driven solutions capable of automating and
optimizing the VLSI design process more
efficiently are highly in demand today.Artificial
Intelligence (AI) along with its sub-types such as
machine learning (ML), deep learning (DL), and
others has become a statutorily fine-tuned
paradigm to diversify and improve design
automation due to enabling capabilities such as
predictive modeling, adaptive optimization, and
real-time decision-making at the different phases

isolated tasks, including placement [Zhou et al,
2022], routing [Chen et al, 2023], or timing
analysis [Liu et al., 2023] but fail to provide an
overall, end-to-end automation context. Moreover,
the majority of models are statically trained and
there is no provision with iterative learning and
design evolution adaptation in real time.
This paper provides an overall Al-enabled design
automation framework that comprises
reinforcement learning (RL), convolutional neural
networks (CNNs), and gradient-boosting models as
controls in important phases of VLSI design
process such as high-level synthesis, floorplanning,
placement, routing, and timing closure as shown in
Figure 1. The framework embodies an ongoing
iteration of design loops allowing a scalable and
intelligent method to achieve a next-generation
VLSI system development.
Major contributions of this work are the following:
. Making a congruous Al-based system that
integrates RL, CNN and GBDT to automatically
design VLSI designs.
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. Incorporation of Al blocks in various phases
of EDA such as high-level synthesis,
placement, routing and timing closure.

e  Ability to support continuous learning and
optimization in an adaptive mode of iterative
design cycles.

Traditional
EDA

Y

Integration
of Al

Y

VLSI Design
Flow

. Empirical tests to normal benchmarks (ISCAS-
85, MCNC, OpenCores) show up to 42 percent
speed-up and 18 percent power decrease.

. Fit with ASIC and FPGA design flows on
common formats and tool chains (e.g.
OpenROAD).

Machine
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Figure 1. Al Integration in VLSI Design Flow for Intelligent Automation

2. RELATED WORK

Rule based, heuristic driven algorithms are widely
used in traditional EDA tools in executing the
design activities like placement, routing, and logic
optimization. Although these techniques have been
successful within past nodes of technology
advancement, they are becoming constrained
through their scaling capability due to the

demands of continuity by the nano scale
integration and the system architecture
heterogeneity.

In a bid to curb these weaknesses, some current
studies have suggested using the machine learning
(ML) methodologies in certain cases of the VLSI
design flow. As an example, timing closure
prediction has been done via support vector
machines (SVMs) (Liu et al, 2023); routing
congestion patterns have been estimated using
convolutional neural networks (CNNs) (Chen et al,,
2023). Reinforcement learning (RL) has already
demonstrated potential in the methodology and
optimization of adaptive placement placement
whereas gradient-boosted decision tree (GBDT)
models were experimented with in early-stage PPA
estimation. These solutions usually do not have the
capacity to enable real time adaptability, inter-
stage feedbacks, continuous learning. Moreover,
most of the models that are trained offline tend to
be non dynamic during design evolution and thus
they are not useful when design is dynamic and
iterative.

Simultaneously, new initiatives on transformer-
based models have shown that long-range
structural dependencies can be learnt in RTL and
layout representations, and they create new
opportunities to be globally aware of the design
context (Jain et al, 2023). Furthermore, neural
architecture search (NAS) frameworks are also
being explored to automatically co-optimise both
Al model and chip resources with a particular
focus on the tasks of IP block generation and
floorplanning (Sinha et al,, 2023). Such approaches
are yet to be fully integrated into complete end-to-
end EDA toolflows, even though they have
potential.

3. Proposed Al-Driven Design Automation
Framework

3.1 Framework Architecture

The proposed framework is designed to augment
traditional EDA flows by embedding intelligent Al
modules at critical stages of the VLSI design
process. The input to the system is either Register
Transfer Level (RTL) code or High-Level Synthesis
(HLS)  descriptions, typically  written in
SystemVerilog or C-based hardware description
languages. As illustrated in Figure 2, the
framework integrates three core Al moduleseach
tailored for a specific function in the design

pipeline.
1. Reinforcement Learning (RL) Engine -
Floorplanning and Clock Tree Optimizer
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This module is responsible for adaptive design-
space exploration during floorplanning and clock
tree synthesis.

e Input: Initial floorplan layout, design
hierarchy, placement cost metrics, and clock
domain constraints.

e Qutput: Optimized macro block placements

and clock tree topology minimizing
wirelength and negative slack.
The RL agent learns optimal design actions by
interacting with environment feedback
through iterative simulations, gradually
improving convergence quality and reducing
routing congestion.

2. Convolutional Neural Network (CNN) Analyzer -

Layout Congestion Predictor

Deployed during the placement stage, this module

identifies suboptimal layout patterns that may lead

to routing bottlenecks.

e Input: Intermediate placed layout snapshots,
netlist connectivity, and congestion history
maps.

e Output: Congestion heatmaps, localized
hotspot indicators, and corrective feedback to
the placer.

The CNN is trained on historical layout data and
acts as a learned evaluator that enables routing-
aware placement refinement in near real-time.

3. Gradient Boosted Decision Tree (GBDT) Models
- Power/Timing Estimator
Used in the early synthesis phase, this module
delivers fast predictive modeling for power
consumption and delay estimation.

e Input: RTL/HLS netlist features (e.g., fanout,
switching activity, logic depth) and pre-layout
design parameters.

e Output: Predicted power usage (LW), worst-
case delay (ps), and area (um?) values.
These estimations support early-stage design
pruning and guide design-space exploration
before expensive physical synthesis.

These modules operate in a coordinated pipeline
and support asynchronous feedback mechanisms
to subsequent stages, enabling dynamic adaptation
during iterative design loops. The modular design
ensures the framework’s extensibility across both
ASIC and FPGA workflows, while maintaining
compatibility with industry-standard design tools
and formats (e.g., Verilog, DEF, LEF, GDSII).
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Figure 2. Al-Driven VLSI Design Framework with Module Functions and Data Flow Annotations
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3.2 Workflow Integration

The proposed framework can be designed to be
easily integrated into open-source and commercial
design ecosystems in order to capitalize on the
synergies of the Danish open design space and
Danish commercial design ecosystems. It also
interfaces natively with industry-standard tools
(see Figure 3), including OpenROAD and according
to OpenROAD 2.0 now also commercial EDA
environments through scripting hooks and plugin-
based adapters. The framework uses file formats
used commonly across the industry like DEF
(Design Exchange Format), LEF (Library Exchange
Format), GDSII, and Verilog/VHDL, and so the
TPUs can be used with conventional digital design
flows.The inference TPUs are asynchronously

activated at specific points of EDA, and receive
inputs like layout files, timing reports, and
RTL/HLS netlists. The results of the Al modules
like floorplans coordinates, congestion feedback,
and PPA estimations are placed back into the
design flow without bringing structural alterations
to the backend flow. This close but non-invasive
binding is more accurate with shorter turnaround
times and minimal impacts to the integrity of
existing toolchains.

This is a plug and play and modular and extensible
architecture which enables the framework to run
in either ASIC or FPGA design environments alike.
It also embraces iterative refinement to a variety of
abstraction levels which encourage real-time co-
optimization of performance, power, and area.

( D
Optimized
_ Floorplan- placement
Optimizer .o
sl OpenROAD
LEF — | Congestion
_> Layout prediction
GDsll Analysis w
Verilog/ L el S ey
Sugﬁ P, PPA Commercial
— PPA metrics EDA Tools
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Figure 3. Workflow Integration and Dataflow View of the Proposed Al Framework

This figure illustrates the integration of the
proposed framework within both open-source and
commercial EDA ecosystems. Inputs such as RTL,
LEF/DEF, and GDSII are processed through Al
modules. Outputs such as optimized placement,
congestion predictions, and PPA estimates are
dynamically routed to downstream tools, enabling
intelligent feedback and system-level optimization.

4. Experimental Setup and Benchmarking

4.1 Datasets

In order to verify the practicality and universality
of the proposed framework of Al in design
automation, experiments were carried out on
benchmark suites that are commonly used such as
ISCAS-85, MCNC and on some of the designs which
are available at OpenCores. The datasets shall be of
various combinational and sequential circuits of
varying logic complexities which are well suited to
testing both the synthesis-stage as well as the
backend-stage automation strategies. The designs
were synthesised to gate level netlists on standard
cell libraries in a 65nm CMOS technology node
before incorporating Al and streamlining the flow.
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4.2 Evaluation Metrics

The assessment of performance was according to

some main VLSI design metrics and consists of

industry standard requirements:

o Power Consumption: Power Power
consumption measured in microwatts ( )
measured after all place and route, with
activity-annotated VCD waveforms.

¢  Timing Closure: Measured by Worst Negative
Slack (WNS) and Total Negative Slack (TNS)
most important pointers on the timing health
of a design.

. Area Utilization: Reflects efficient utilization
of silicon after floorplanning and placement
and it is reported inCamp.

. EDA Runtime: Overall flow execution time,
such as time needed to perform synthesis,
placement, routing and timing analysis in
seconds (s).

All these stewardship measures present the overall

effect of Al modules on performance, energy, and

eventual productivity.

4.3Quantitative Results
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A benchmark was created based off of a baseline
EDA flow sans intelligent optimization that the Al-
enhanced framework was compared to. The
outcomes showed drastic execution improvements

without compromising tolerable approximations
in other measures. Table 1 shows a summary of
the comparison between two benchmark circuits
commonly used as the following:

Table 1
Architecture | Baseline Runtime | Al Framework Runtime | Improvement (%)
c5315 900 s 524s 41.8%
s9234 1230s 721s 41.3%

One of the outcomes of these results is the power
of the framework to speed up the design closure
process by an average of above 40 percent.
Reinforcement learning and predictive models
were used to help with more efficient design-space

#uA Baseline Runtime
1200 mess Al Framework Runtime

1000
9005

800+

600

EDA Runtime (s)

400+

200

exploration, and CNN-based layout feedback were
used to help increase the quality of convergence in
physics design. Subsidiary tests ascertained low
levels of diminishing the PPA measures, proving
the sturdiness and versatility of the scheme.

1230s

721s

-

c5315

59234

Benchmark Circuits

Figure 4. Comparison of EDA Runtime: Baseline vs. Al Framework

5. RESULTS AND ANALYSIS

The results of the experiment show that the
proposed Al-driven formalization of design
automation can not only speed up the execution
time at the significant improvement of the layout
quality and accuracy. This is a significant step up
upon previous heuristic-based floorplanning
techniques whose implementation might trade
between excellent area results and timing closure
(Zhang et al., 2021).

Furthermore, RL module will improve timing
indirectly as well because it produces better early
placement-density floorplans, which minimize the
high-fanout net distance and the criticality. These
streamlined plans are then in turn fed into the
CNN-based layout diagnostics, which further fine
tunes congestion awareness. With more realistic
low congestion input floorplans used to selectively
direct the CNN model the framework has achieved
hotspot prediction and mitigation based on lower
congestion input floorplans to achieve a feedback
loop advantage of both the physical predictability
and conversion of route success at that lower

congestion input floorplan stage. The CNN,
compared to the cases of static congestion
estimation tools, takes advantage of deep spatial
features learned in earlier patterns to raise the
alarm on possible congestion before it occurs and
provide valuable feedback in time. Such proactive
conduct makes the method stand out compared to
the previously known studies like Chen et al
(2020), which only focused on post-layout
reporting of congestion but not dynamic
correction.It is also true that Gradient Boosted
Decision Tree (GBDT) models showed a very good
early prediction quality of power and delay
quantities, accurate to within 5 percent of post-
layout signoffs. This is in sharp comparison to the
traditional rule-based estimation methods which
normally exhibit a deviation of less or equal to +/-
10-15% variations in large and very deep pipeline
designs (Liu et al., 2022). The forecasting potential
allows a quick elimination of design configurations
that do not pass the PPA verification, doing away
with any excessive synthesis cycles and boosting
convergence. Notably, the interdependence of the
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Al modules with RL steering initial layout quality,
CNN ready with placement correction in real-time,
and GBDT to predict PPA trade-offs, there is a
synergistic feedback loop that can often benefit
learning throughout the pipeline. Such cross-stage
interaction changes the traditionally fixed EDA
phases, into an evolving, adaptive system.

The second content diagram, given as figure 5,
visually compares the undoing of the whitespace
against a positive timing change, which justifies

w#wz Whitespace Reduction (%)

the result of physical optimization via Al-powered
decision-making.

As Table 2 reveals, the given framework offers
better results than the previous solutions, in
regard of whitespace minimization, handling of
congestion, accuracy of the PPA, and flexibility.
Such findings support the superiority of applying
reinforcement learning, deep learning and
predictive modeling in the same VLSI design flow.

po WNS Improvement (ps)

Benchmark Circuits

Figure 5. Correlation Between Whitespace Reduction and WNS Improvement

Table 2. Comparison of Prior Studies vs. Proposed Framework

Estimation Adaptivity
Whitespace Accuracy /Continuous
Study / Method Reduction(%) Congestion Handling (Power/Delay) Learning
Zhang et al. (2021) - Limited Hotspot
Heuristic Floorplanning 12-15% Mitigation >+10% No
Chen et al. (2020) - Post-
layout Congestion Post-routing
Analysis N/A Identification Only N/A No
Liu et al. (2022) - Rule-
Based Estimation N/A N/A *10-15% No
Proactive Hotspot
Proposed Al Framework Up to 26% Elimination via CNN Within +5% Yes

6. DISCUSSION

The suggested Al-based design automation system
is highly cross-domain suitable and can thus be
deployed in a variety of implementation situations,
such as the applicative Specific Integrated Circuit
(ASIC) and Field-Programmable Gate Array (FPGA)
design flows. The way it has been compatible with
a range of different technology nodes (right up to
65nm mature processes and down to state of the
art sub-10nm FinFET technologies) shows that it is
an architecturally-robust and scaling solution.
Such flexibility can be helped by the fact the
constitutive Al functionality is developed and
optimized in a modular matter enabling fine

grained control and optimization of the constraint-
architecturally-heterogeneous design styles.

This method is a drastic change of dynamic, single-
task inference approaches towards traditional ML-
based EDA methods (as indicated in Figure 6).
Comparatively, the proposed framework is better
placed in real-world implementation in dynamic
and complex VLSI design environments because of
its unified automation, continuous learning and
multi-objective optimization approaches. So far,
there are still limitations. Actually, the training
overhead required to train certain machine
learning models, especially reinforcement learning
and Deep CNN, may be computationally
demanding. As another example the RL-based
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floorplanner took about 4 hours to train on a single
NVIDIA A100 GPU, whereas the GBDT models that
estimate power/timing took less than 20 minutes
on a 32-core CPU workstation. Such resource
requirements can be suitable to industrial
implementation but can be a hindrance to rapid
prototyping or use in time-limited or price-limited
applications.Lack of interpretability in design
decisions made with Al is another important issue.
Although the framework presents measurable
improvements in regards to runtime, PPA
optimization, and layout quality, the framework is
not able to provide one with an understanding of
the internal decision logic of the models as yet.
This black-box nature is an issue in fields where
safety must be guaranteed, e.g. automotive control
units, and aerospace electronics, and medical
implantable devices that require deterministic

Prior Work:
Traditional ML
Approaches

traceability, explainability, and certification
compliance. In these scenarios, it is possible that
unverifiable judgment of opaque Al systems will
lead to regulatory backlash or errors in the system
functioning. Future research conducted on such
aspects will involve introducing the aspects of
Explainable Al (XAI) techniques to make the
optimization paths more verifiable through the use
of attention based visualization, surrogate model
distillation and the use of saliency maps. Also, the
reasoner modules of the runtime monitors could
be incorporated to give logic-level rationale to
proposed changes in design suggested by the Al,
thus building greater designer confidence and
giving it a way forward into higher reliability
applications.

7. CONCLUSION
This Work:

Al-Driven
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Automation

Y
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Figure 6. Comparative Flowchart of Traditional ML Approaches vs. Al-Driven Design Automation

This paper presents a single framework of the Al-
based design automation, which is successfully
solving the shortcomings of the classical rule-
based providences of VLSI design methodologies.
The inclusion of reinforcement learning (RL),
convolutional neural networks (CNNs), and
gradient-boosted decision trees (GBDTs) results in
the framework achieving massive benefits in both
runtime efficiency, power optimization, and timing
closure by being incorporated in the most crucial
steps of the EDA process flow. The its modular and
technology-agnostic architecture facilitates
deployment across an ASIC and FPGA development
environment, and the technology indicates the
general applicability of its approach and the
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structural strength.Although the results are
encouraging, there are some limitationsnamely
limitations towards the aspect of generalizing
trained models to novel architectures, and the cost
of Al component integration into existing or
proprietary EDA flows. Such features will have to
be supported in order to reach mass adoption in
industry use cases.In the future, the framework
can be improved by being equipped with
transformer-based architectures, which have
proven to be exceptionally capable of modeling
long-range relationships and high-level design
semantics (Jain et al., 2023). These modules will
work in conjunction with the current set in that
they will capture any global RTL or layout context,
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and use it to feed high-quality embeddings into RL
policy updates, CNN-based congestion estimation
and GBDT-based refinement of linear predictions.
Such tight coupling should enhance abstraction-
level design knowledge and automate the
otherwise difficult tasks of design space search and
RTL tuning further.Also, an intelligent co-
optimization of IP blocks will be facilitated with
the application of hardware-aware neural
architecture designs (Sinha et al, 2023).
Optimization of the design of neural models with
those of the backend implementation purposes
will enable the NAS to transform the framework
beyond task-level acceleration to full-system
intelligence.

These developments will eventually create next-
generation paradigm of VLSI design automation
features of being scalable and adaptive, as well as
being hardware-contextual sensitive and real-
world deployment-optimal in its nature.
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