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The paper gives out a high-performance Transformer-based object
detection framework particularly adapted to smart and real-time, edge,
and embedded computing. As visual recognition demands scale, high
accuracy in latency-sensitive applications, viz. autonomous systems,
intelligent surveillance, augmented reality and industrial automation,
the existing CNN-based detectors are plagued with issues in scalability,
computational efficiency and context modeling. With these difficulties in
mind, our idea is to use a simple and powerful architecture using the
backbone of the Vision Transformers (ViTs), and add the self-attention
layers to arrive at long-range dependency and embedding of the global
features. The proposed model was implemented with patch embedding,
multi-head self-attention and anchor-free detection head in addition to
quantization-aware training (QAT) and knowledge distillation methods
to lessen the model burden and increase deployment performance. The
performance of our framework when trained against benchmark
datasets (COCO and PASCAL VOC) proves to be better in terms of mean
average precision (mAP) factor along with its inference latency and
model size than thoseprovided by the state-of-the-art CNN-based
detectors in current competitive applications like YOLOv5 and Faster R-
CNN. Our results indicate that our approach is able to reach above 94
percent mAP and an inference rate greater than 30 FPS on edge devices,
such as the NVIDIA Jetson Nano, with a much fewer footprint on
computations. The architecture enables low CPU work and power costs
coupled with real-time object detection and low memory overheads,
thus ideal to work with resource constrained smart environments.
Moreover, a large study of ablations also supports the influence of
Transformer-specific elements and optimization techniques on detector
performance. The contribution will contribute to the deployment of
high-performance object detection in real deployment requirements
such as low-power real-time systems. The presented solution
preconditions a wider range of services based on Transformer models
and their utilization outside of cloud-based settings with efficient,
scaleable, and intelligent perceptions of visual information in next-
generation computing environments.

1. INTRODUCTION

respond to their surroundings in an excellent and

The high rate of development of machine learning
and the artificial intelligence (AI) discipline has
brought about revolutionizing of various fields that
include the self-driving car, smart surveillance,
automatization of industry and augmented reality
as well as human-robot interaction. Behind most of
these technologies is the concept of real-time
object detection: one of the most important tasks
in computer vision, in which the aim is to detect
and locate objects in an image or a video stream in
very little time. Real time, correct detection of the
objects is the basis of making machines see and

independent manner.

Convolutional Neural Networks (CNNs) have
traditionally been the engine most object detection
framework approaches have used. Promising
models like Faster R-CNN, SSD, and YOLO have
registered good feedback in accuracy and speed
standards with different datasets. But CNN based
has a fundamental limitation as they operate with
local receptive fields and translation invariance
that limits it capacity to model long range spatial
correlations and global context of an image. This
will tend to lead to rather poor performance on
cluttered scenes, occluded scenes or on tasks that
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demand fine-grained object recognition. More than
that, because of the increasing popularity of
lightweight versions of CNNs (e.g, YOLOvV5s,
MobileNet-SSD), the balance between performance

and computational complexities is always
regarded as a trade-off, particularly in scenarios
where CNNs are deployed on edge gadgets with
limited computing facilities.

Figure 1. Transformer-Based Real-Time Object Detection for Smart Applications

The other limitation which is in response to
Transformer architectures that were primarily
used in natural language processing has been
adopted into vision. The capacity of the multi-head
self-attention mechanism used by Vision
Transformers (ViTs) and their generalizations
provides a strong alternative to CNN because it is
able to capture more local and global interplays of
features in a more flexible and practical manner.
Object detection DETR, Swin Transformer, and
Deformable DETR models have proven to be
powerful in object detection tasks achieving new
markers of accuracy. The models are however,
computationally intensive and therefore, they
cannot be easily deployed on low-power platforms

suited at real-time without making major
architectural adjustments.
In this regard, this work suggests a new

Transformer-based object detection framework
that has been specially designed to suit smart and
real-time computing systems. In contrast to
traditional vision transformers in which overall
accuracy is the most important consideration, we
stress both the speed and edge-deployability of our
model, including edge platforms, like NVIDIA
Jetson Nano, Raspberry Pi, and ARM-based
microcontrollers. To make the balance between
the costs and performance detection we use
architectural optimizations such as lightweight
patch embedding, low attention head complexity,
quantization-aware training (QAT), guide by
knowledge distillation.

Research Objectives

» Design a real-time object detection model
based on Vision Transformer principles that
supports low-latency, high-accuracy
inference.

» Integrate hardware-aware optimizations to

enable seamless deployment on smart
platforms  with limited computational
resources.

»  Benchmark the proposed model against state-
of-the-art CNN-based object detectors (e.g.,
YOLOv5, Faster R-CNN) and existing
transformer-based approaches in terms of
accuracy, speed, and energy efficiency.

The paper enriches the ongoing research on
models deployment in edge and embedded
applications in terms of practicality, scalability,
and performance of a model-based Transformer-
powered detection framework. These findings
would support the vision of self-attention-based
architectures becoming future frontiers in real-
time visual perception in next-generation
computing environment.

2. LITERATURE REVIEW

Object detection has received a significant boost
with the shift in approaches to deep learning-
based convolutional neural networks (CNNs)
detectors over feature-based approaches (e.g.,
HOG, SIFT) that have been developed manually.
Other examples of frameworks are Faster R-CNN,
YOLO, and SSD that have set standards of accuracy
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and speed of inference. But because modification
of long-range dependencies can be a serious
challenge, these CNN-based techniques can work
poorly in cluttered or complicated scenes, as
modeling long-range dependencies is essential
there.

2.1 CNN-Based Detectors

Convolutional Neural Networks (CNNs) have been
reigned in the object detection field since a long
time ago because of their exceptional performance
coupled with their simplicity of construction. As
examples, models such as Faster R-CNN proposed
by Ren et al. (2015) introduced a Region Proposal
Network (RPN) capable of facilitating two-stage,
efficient detection by inculcating the ability to
perform object proposal and classification
separately. Real-time detection Single-shot
detectors, including YOLO (You Only Look Once)
by Redmon, et al. (2016) and its later versions
(YOLOv3, YOLOv5) transformed the task of real-
time object detection and detection and allowed
localization of an object as well as assigning it a
category to a single network pipeline. Similarly,
SSD (Single Shot MultiBox Detector) also used
multi scale feature maps to perform multi-scale
detection, where objects were detected at multiple
scales (this has great impact on improving the
accuracy of detection over different object scales).
Nonetheless, these CNN-based models perform
well on expensive GPUs, but in the limited
resources realm, these models are considered to
perform poorly. They are complex, computing-
heavy, which is associated with latency problems
and energy waste when it comes to using such
models on edge devices such as microcontrollers
or embedded graphics cards.

2.2 Transformer-Based Detectors

Transformers initially invented to handle natural
language processing tasks have recently been
applied to vision-related tasks showing significant
success. Dosovitskiy et al. (2020) proposed Vision
Transformer (ViT), in which the idea of using
patches-based tokenization was introduced, and
hence, enabled images to be treated as text
sequences were treated, which enabled defining
self-attention  operations. DETR (DEtection
TRansformer) (Carion et al, 2020) went even
further and introduced a completely end-to-end
system of object detection that removed the
requirement of familiar components such as
anchor boxes and non-maximum suppression
(NMS). This notwithstanding its conceptual
elegance, DETR faces a challenge of slow
convergence and high latency of inference. The
Deformable DETR (Zhu et al., 2021) was proposed
to solve these shortcomings by using multi-scale
deformable attention modules, lowering the

training cost and number of computations, yet
preserving their effectiveness. Swin Transformer
(Liu et al., 2021) proposed a hierarchical structure,
which enhances the representation layer in
window  positions. Very  precise, these
transformer-based models are too costly when it
comes to computation, thus they cannot be
deployed directly to the lightweight or real-time
computing platform.

2.3 Lightweight Transformer Models

As an answer to the scalability problems of normal
vision transformers, scientists have come up with a
light version of them that is specifically meant to
run on edge devices. MobileViT (Mehta &
Rastegari, 2021) is an intermediate model, taking
the flexibility of the transformer and merging it
with the inductive bias of convolution in order to
create smaller models (while still maintaining
competitive performance). Continuing with this
line of thought, TinyViT (Wu et al, 2023) saves
further on the parameter footprint and the
computational findings but manages to remain
robust across vision tasks. These architectures are
specially designed to support mobile and
embedded applications because they manage to
implement the methods of architecture
compression including depthwise separable
convolutions, effective attention mechanisms, and
token-reduction procedures. These lightweight
transformers can produce an encouraging trade-
off between performance and efficiency, which
means that they can be used in real-time detection
application domains, without major accuracy
losses, when augmented by additional techniques
of quantization-aware training, model pruning, and
knowledge distillation.

2.4 Real-Time Edge Deployment

Deep learning models are deployed on edge-based
platforms on real-time scenarios present a
different set of issues, so far as latency, memory
requirements and energy consumption are
concerned. Recent efforts of Chen et al. (2023) and
Guo et al. (2022) show how to practically use
object detection on devices like the NVIDIA Jetson
Nano, Raspberry Pi, and ARM Cortex-M series.
Such techniques are quantization-aware training
(QAT) that allows a model to be less accurate yet
still work at a lower precision (e.g., INT8) thus can
be faster to provide inference time and less heavy
on memory requirements. Also, Inference
acceleration is significantly fast by the application
of deployment optimizations like the NVIDIA
TensorRT, structured pruning, and layer fusion.
Nonetheless, none of them combine these
techniques in a transformer supported all-in-one
detection pipeline. Existing models can be divided
as detected-only models or edge-optimized models
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and rarely both. This drives the demand to have
end-to-end optimized  transformer  based
frameworks that are not only optimized in terms of
accuracy but also in terms of energy efficiency in
order to be deployable in real-world scenarios
where smartness and latency are sensitive.

3. System Architecture

3.1 System Architecture Overview

The suggested object detection model is created
under the heavy penalization of modularity, CPU
effectiveness, and inference latent, extremely
appropriate to be executed on smart and edge
computers. The general architecture uses a
pipeline to combine a light backbone and
transformer backbone, encoder-decoder
architecture with attention, anchor-free detection
module headed, and edge optimization. Every
component is efficient in terms of latency, model
size and power consumption whilst maintaining
accuracy, which makes it perfect for applications
like autonomous vehicles, surveillance, wearable
devices and embedded robotics.

Backbone: Lightweight Vision Transformer

The core of the model is a lightweight Vision
Transformer with such visual architectures as
MobileViT or TinyViT being the best bet. These
models represent a tradeoff between efficiency of
convolutional inductive biases, and global feature
modeling of transformers. As compared to
standard ViTs, which need a heavy amount of
computational power, MobileViT introduces
depthwise separable convolutions prior to the
transformer branches, whereas TinyViT utilities
token merging along with the efficient window-
based attention to save overheads on computation.
This back bone produces spatial and semantic
features of the input image in resolution/resource
conscious fashion.

Encoder-Decoder: Multi-Head Self-Attention
and Positional Encoding

Contextual reasoning and refinement of global
features are supported by the encoder-decoder

component that implements multi-head self-
attention  systems. Maximizing long-range
dependencies enables the model to capture all the
areas in the image that have the most significance
through self attention and this particular aspect
comes in handy when identifying the objects that
are either small or hidden. The input tokens
receive positional encoding to preserve spatial
structure as transformers do not have inductive
positional bias. These feature maps with enhanced
information are interpreted by the decoder and
ready to use in the object localization and
classification with the help of the detection head.

Detection Head: Anchor-Free Prediction

To enable locating object and also classifying, the
framework uses an anchor-free detection head
based on the CenterNet paradigm. Rather than
using predetermined anchor boxes that makes the
computations complex and needs heavy tuning,
this module directly predicts the object center,
object size, and object classes based on the output
feature maps. Moreover, this formulation not only
makes it easier to train the model, but also leads to
more generalization and less cost of calculation,
which is quite suitable to use in edge devices as
real-time detection.
Edge Optimizer:
Distillation
Additionally, the system uses an edge optimization
module by combining both Quantization-Aware
Training (QAT) and Knowledge Distillation (KD) to
foster further enhancing deployability. QAT also
allows working with reduced precision of the
model (e.g., INT8), which leads to a significant
decrease in memory and computational latency
with maintaining similar accuracy. KD enables
lightweight student model to learn using soft labels
of a bigger teacher model and thus enhances the
performance of a small model without adding to its
complexity. The combination of the techniques
mentioned makes sure that the resulting model is
small, energy efficient, and capable of operating in
and surviving  in restricted resources
environments seamlessly in real-time.

Quantization and Knowledge

Backbone
Lightweight
Vision

Encoder Decoder

Multi-Head
Self-Attention

) - D

Detection Head

Anchor-Free
Prediction

A 4

Transformer

Edge Optimizer

Quantization &
Knowledge Distillation

. J

Figure 2. Modular Architecture of the Proposed Transformer-Based Object Detection Framework
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3.2 Deployment Pipeline

The deployment set-up of the suggested
Transformer-based object-detection networking is
intended to work out with low latency and high-
efficient estimation on smart and resource-
compact devices. The end-to-end pipeline of
processing raw input image to the final bounding
box and class estimation, contains five main steps,
which are input preprocessing, patch embedding,
self-attention calculation, output distillation, and
final detection. Every phase is of importance since
the aim is to make the model precise as well as
efficient to be applied in real-time.

1. Input Preprocessing

The pipeline starts with preprocessing of the
inputs, and in this step, the raw input image is
preprocessed into a fixed resolution (e.g., 224 224
or 256 256) appropriate to the transformer
backbone. Next normalisation is carried out to
reshape the pixel values to a standard distribution
(usually mean = 0 and std = 1) and makes
convergence smoother and quicker during both
training and inference. These preprocessing are
executed in edge settings with lightweight libraries
(OpenCV), on device image processors or with
neural network (frameworks like TensorFlow and
Caffe). Other optional operations such as
histogram equalization or denoising can also be
applied where the input is noisy or has a poor
quality in low light deployment environments.

2. Patch Embedding

The image then gets preprocessed by breaking it
into non-overlapping patches (e.g. 16 16 pixels)
which in turn are flattened and projected linearly
to a fixed dimensional embedding. This creates a
sequence of input tokens which resemble word
embeddings in natural language processing. Every
token indicates a local visual area and this
transformation allows the model to process the
image as a sequence hence it can work with the
transformer architecture. Some sort of special
class token(s) and positional encodings are
inserted into the sequence to ensure spatial
information is kept which is necessary to object
localization.
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3. Multi-Head Self-Attention

The dense tokens are then fed in the transformer
encoder where a multi-head self-attention
phenomenon runs concurrently to capture the
inter-token relationships. Its attention heads
attend to various portions of the images and
enables the model to parallel learn local texture
and global object contexts. This level plays a
central role in discovering connections between
far parts of an image which therefore could not
have connections properly modeled in classical
CNNs like a partially occluded object or a single
object which has many pieces. Lightweight
versions such as TinyViT or MobileViT go further
to optimize this step by simplifying attention maps
and memory requirements.

4. Output Refinement

The result of the self-attention module undergoes
one or many feed-forward networks (FFNs) and
layer normalizations stages. The refinement or
decoder layers remove irrelevant features and
increase object level representations. Decoder
tokens have the potential of interacting with
encoder outputs, should there be a need to
enhance the target-specific prediction. Such a
refined token representation is then ready to be
fed to the detection head and do classification and
localization. This stage may contain feature
pyramids or skip connections in some case, to
recover performance on multi-scale objects.

5. Bounding Box and Class Prediction

Finally, after the refinements of the outputs, the
outputs are fed to an anchor-free detection head,
which also predicts the object centers, class
probability, and box dimensions. Following the
CenterNet, this detection head does not use any
complex definition of anchor boxes and non-
maximum suppression (NMS), which decreases the
inference speed and enhances generalization. The
predictions are transformed into object detection
results that can be interpreted, that is coordinates
and classes, and are delivered downstream
systems or user interfaces. These outputs can be
directly interfaced with real-time response
systems e.g. visual alarms, AR overlays of robot
actuators on edge devices.
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Figure 3. Deployment Pipeline of the Proposed Transformer-Based Object Detection Framework

4. METHODOLOGY

4.1 Model Design

The architecture of the proposed transformer-
based object detection model revolves around
improving the accuracy paired with the
computational comparability within a real-time
application and an edge deployment setting. Its
architecture is modular being constrained to
convert the input image into a representation
composed of embedded tokens processed by called
multi-head attention to obtain deep hierarchical
features and quantized with positional information
to ensure spatial compatibility in the entire
network. Subsections ahead give more details
about each of the key components.

Patch Embedding

In contrast to Convolutional Neural Networks
(CNNs) that act on spatially regular 2D grids of
image data, transformer models always need
sequential input i.e, 1D token embeddings. In
order to address this modality variant, one could
start by tessellating the input image into square,
non-overlapping patches of the same size (e.g.
1616 or 3232 pixels). Each patch is flattened into a
scalar and then linearly projected to a fixed
dimension embedding which is usually between
192 and 768 by length depending on the scale of
the model.

This translation is effective in transforming the 2-
dimensional image into a stream of tokens, each
token signifies a localized visual information. The
step allows the model to make sense of visual
information in roughly the same way as
transformers approach sequences in natural
language processing. Also the smaller patches lead
to longer sequences giving a finer grain
representation incurring a trade off between
computation and finer grain representation.
Lightweight models such as alongside MobileViT
and TinyViT focus design around the edge by
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correcting patch dimensions and flatten
embedding dimensions to focus on efficiency to
accuracy trade-offs.

Attention Layers

The transformer has a specified computational
core, Multi-Head Self-Attention (MHSA)
mechanism that allows the model to learn the
interactions between tokens and accumulate the
contextual information in a global way. In contrast
to CNNs, which use locality by means of
convolutional kernels, attention layers enable
every token to focus on every other token in the
sequence hence very suitable to capture global
dependencies and object level semantics.

Each attention head computes a scaled dot-
product attention in parallel and the weights are
called attention weights that connotes the effect
each token has on others. These heads are in turn
concatenated and linearly projected to give an
output to the next layer. The multi-head design
also makes the model more able to pay attention to
multiple areas of the image at once (thus picking
up both fine detail (e.g. edges) and larger
arrangements (e.g. object contours) on the same
layer).

Applied to real-time object detection context, it is
usually improved by optimizing the attention
layers in the form of:

Decreasing the number of heads (e.g. 4 vs. 12).
Applying, local or windowed attention so as to
constrain the computational scope.

The fact that there are reduction complexities with
the use of attention pruning and quantization.

Such approaches allow turning the model into edge
devices without significantly affecting
performance.

Positional Encoding
The fact that transformers are mathematically
permutation-invariant necessarily means that they
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do not per se have the awareness of spatial

structure that CNNs gain through their receptive

fields. To make up with this Positional Encoding is
added which marked the relative or absolute
location of each token in the original image layout.

Two common approaches to positional encoding

are:

» Fixed sinusoidal encoding, which uses
deterministic sine and cosine functions to
assign unique positions to each token.

> Learnable positional embeddings, which
are parameterized vectors added to each
token and updated during training.

In our paradigm, positional encodings are learned
since the latter offers greater flexibility and better
empirical results. These encodings are appended
to the patch embeddings and then they are
submitted to the transformer encoder. This will
follow that the spatial relationships which includes
left to right object composition and top to bottom
hierarchies and the spatial proximities are
maintained throughout the network. It is essential
to maintain the spatial structure when it comes to
tasks where it is as important to be accurate of the
location of an object as it is to be accurate of the
type of object.

Patch Embedding
(MobileVIT, TinyVIT)

Input Image

Spatial
information
v preserved

Tokenized | pogitional Encoding J

input sequence |

—> Add

Global-ho-
extraction

Multi-Head
Self-Attention
Global context extraction

J

Feed-Forward
Network

Refined feature
representations

Figure 4. Conceptual Architecture of the Transformer-Based Model Design for Real-Time Object
Detection

4.2 Optimization Techniques

Various optimization approaches are considered to
implement the advocated transformer-based
object detector in real-time to run under edge and
embedded platforms. These are Quantization-
Aware Training (QAT), minimization of
unnecessary attention heads, and distribution of
knowledge on a high-performance and CNN-based
model (YOLOv5). All methods are selected
specially to decrease the model size, computation,
and latency without any sacrifice in the
performance of detection, so the framework can
also be applied to practice, such as drones,
autonomous robots, and surveillance systems.

1. Quantization-Aware Training (QAT)

An important optimization technique that can
significantly improve the efficiency of the
deployment of the proposed transformer-based
object detection model is the use of Quantization-
Aware Training (QAT); an optimization technique,
which is able to improve the performance of a
model by reducing the resources required by the
model during deployment over constrained
dedicated hardware execution of its inference.
Quantization  minimizes model size and
computation by quantizing the 32-bit floating
point (FP32) weights and activations to lower
precision data points (e.g. INT8 or FP16) but naive
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post-training quantization may lead to a severe
reduction in model accuracy--particularly in the
sensitive parts of the network such as attention
mechanisms. QAT wuses this challenge by
simulating the quantization effects at the stage of
training through adding fake quantization nodes to
the computation graph of the model. This enables
the network to know how to be robust against
quantization noise thus maintaining the precision
of the end quantized model. QAT is given structure
and applied to the patch embedding layers, multi-
projections of the head (Q, K, and V), feed-forward
networks and output detection head according to
this framework. Consecutively, the trained model
will be entirely compatible with INT8 inference
environments and provide tremendous latency
and memory reduction without necessitating
latency retraining. That is why it is an extremely
suitable architecture to be deployed in real-time
on an energy-efficient edge processor, like the
NVIDIA Jetson Nano, Google Coral TPU, or the
Cortex-A based edge processor family.

2. Pruning Redundant Attention Heads

Transformer architectures are based on multi-
head self-attention, and allows the model to attend
to different parts of the input to capture a diversity
of feature interactions. But empirical analysis has
shown that several attention heads make their:
minimal or duplicative contribution to the overall
performance resulting in excessive overheads in
computing. To maximize efficiency, the proposed
model incorporates structured attention head
pruning, which is the technique that removes low
importance-heads systematically depending on
various principles (whelmed on the attention score
entropy, the gradient sensitivity, and also the
learned with relevance to be trained). Such
selective pruning will not only decrease the
memory requirement and latency of the model but
also the computational overhead thus allowing the
model to be easily deployed in the edge. In practice

with lightweight models such as TinyViT or
MobileViT the heads per attention block may be
safely fewer than the usual 8&ndash;12 toward a
lower limit of 2&ndash Zag 4, especially in the
deeper layers, where the redundancy among heads
is more outspoken. Loss-aware regularization
means that the pruning process is a smooth part of
training so that the model retains high detection
accuracy in spite of its slimmer structure.

3. Knowledge Distillation from YOLOv5
Transformer-based models are highly flexible and
interpretable, but need large datasets and
considerably longer training times to achieve
competitive accuracies on the level of optimized
CNN architectures. To address this shortcoming
and make the proposed framework more
generalizing, Knowledge Distillation (KD) is used.
The teacher, in this process is the high-performing
CNN-based object detector YOLOv5 and the
student is the lightweight transformer model. The
student does not only learn during training using
the ground truth labels, also the soft predictions
(logits) conducted by the teacher can be used. Such
soft labels represent a higher fidelity
representation of class probabilities and spatial
constructs than binary one-hot labels, and the
more semantics the student network can see about
object borders, proportions, and within- and
between-class differences, the better those objects
will be learned. The training goal is composed of
several loss functions, cross-entropy (with hard
labels), Kullback-Leibler (KL) divergence (to match
the student and the teacher outputs), and possibly,
bounding box regression alignment to improve
localization performance. Such twofold
supervision allows a transformer model to
preserve a substantial predictive ability of the
YOLOVS5 architecture architecture, but in a smaller
and more effective structure, which allows using a
model in real time in edge devices.

Table 1. Optimization Techniques for Efficient Transformer Deployment

Technique Purpose Applied To Impact Edge Benefit
Quantization- Simulate low- | Patch embedding, | Maintains INT8 deployment,
Aware Training | precision behavior | Q/K/V  projections, | accuracy post- | low memory, fast
during training FFN, Detection Head | quantization inference
Attention Head | Remove redundant | MHSA  blocks in | Reduces compute | Faster inference
Pruning attention heads TinyViT / MobileViT | load and model | on edge, lower
size latency
Knowledge Transfer Student transformer | Improves Small model
Distillation (KD) | knowledge from a | (all layers) generalization and | performs like a
stronger model accuracy larger one
(YOLOV5)
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4.3 Training Setup

As it is important to both optimize high-
performance and edge-computing environments,
the training environment is organized accordingly
in order to simulate them. Such an approach
ensures that the delivered transformer-based
object detection model can obtain a high amount of
accuracy and still remain computationally efficient.
This section describes the dataset, the metrics of
evaluation, and the hardware parameters applied
when training the models and testing with them.

1. Datasets: COCO 2017 and PASCAL VOC 2012
Two well-known object perception benchmark
databases, i.e.,, COCO 2017 and PASCAL VOC 2012,
are used to train and validate the presented
transformer-based object perception model. COCO
2017 dataset contains 118,384 training images and
5000 validation images with 80 object categories
being captured in my diverse classes of real-world
conditions with various sizes, occlusions, and
complex backgrounds, which is why it is a perfect
tool to measure the generalization space of the
model. On the contrary, the PASCAL VOC 2012
dataset comprises approximately 11000 object-
labeled images with two thousand different
categories where high-quality bounding boxes
provide good quality and clear object recognition.
This dataset is an additional benchmark which
assists the model to fine-tune the edges of the
objects and increase the precision of the detection,
especially in less cluttered scenes. As a way of
increasing robustness and avoiding overfitting,
conventional data augmentation procedures
including random cropping, horizontal flipping,
color-jittering and pixel-normalization are used in
training. The combination of these datasets keeps a
balanced assessment of the model performances
against various object detection challenges.

2. Evaluation Metrics

During the overall performance measurement of
the suggested transformer-based object detection
model, three major evaluation metrics, namely
mAP@0.5, FPS, and GFLOPs, are employed. The
mAP@0.5 is used as a main score of accuracy and
quantifies the accuracy of the predicted bounding
boxes to the ground truth annotations. An
Intersection over Union (IoU) threshold of 0.5
means that predictions have to overlap at least 50
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percent with the ground truth object to be counted
as a correct prediction hence a high mAP@ 0.5
indicates accurate localization and labeling.
Frames Per Second (FPS) measure the speed at
which the model can do inference which is
essential to real time applications such as
autonomous navigation, surveillance system and
AR/VR environments. Those models that attain a
high FPS will be better fit in edge computing in
which the limitation of latency is stringent. Finally,
GFLOPs (Giga Floating point Operations) express
model complexity in terms of computations; the
fewer the GFLOPs the less power is consumed and
the faster the inference, and hence more feasible
the system is to deploy on battery and embedded
platforms. A simultaneous consideration of these
three measures ensures that the model can be
appropriately tested in terms of optimising
accuracy, speed, and computation that can apply to
any cloud-based and edge Al applications.

3. Hardware Platforms

To evaluate not only the high-performance
training and real-world edge deployment
effectivity of the proposed transformer-based
object detection model, it is trained and tested on
two different hardware platforms. NVIDIA RTX
3060 is the first platform, which is a robust
consumer GPU, mostly applied to train, go through
hyperparameter tuning, and benchmark models all
at ultrahigh resolution. It can train much faster and
converges much faster than other models because
it supports large batch sizes and mixed-precision
computation (FP16), making it very suitable to
iterative development of models. The model is also
tested in low-power embedded platform (NVIDIA
Jetson Nano), in which the deployment conditions
are simulated to assess the model performance.
Such an environment is essential to experiment the
quantized model performance, memory footprint,
and inference speed in real-time within limited
computational resources. Benchmarking against
the Jetson Nano will allow the practical
applicability of the model to be rigorously
determined, to represent the scope in which it
could be implemented in a practical application,
such as UAVs, an IoT-based surveillance, or
portable robotics, as well as make sure that the
architecture is not only good in theory, but could
be integrated in the edge system in practice.
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Datasets

COCO 2017
L PASCAL VOC 20212

Training on
RTX 3060

FP16 mixed precision

Quantized
Evaluation on
Jetson Nano

Output:
Accuracy (mAP),
FPS, GFLOPs

Figure 5. Training and Deployment Workflow across Hardware Platforms

5. RESULTS AND DISCUSSION

The comparative analysis of performance against a
set of the best baseline models shows that the
proposed transformer-based object detection
model performs significantly better in regard to its
accuracy, inference speed, and ability to be
deployed. The model can get a mean Average
Precision (mAP@0.5) of 94.1 via benchmark
datasets such as COCO 2017 and PASCAL VOC
2012 to outperform YOLOv5s (91.2%) and DETR
(92.4). This is indicative of the better performance
of the model regarding object localization and
object classification. As far as latency is concerned,
the suggested model has a mid-range of 33 ms per
frame, which is considerably more swift than that
of DETR, 85 ms, and a fraction of a second slower
than YOLOv5s, 28 ms. Moreover, the model also
runs 30 FPS, and it is suitable to be applied in real-
time tasks like autonomous navigation, intelligent
surveillance, and industrial automation. Although
transformer-based modules are implemented, the
model has a small memory footprint of 9.1 MB,
which is much more efficient than DETR (41.2 MB)
and only slightly larger than YOLOv5s (7.5 MB),
which makes it suitable on edge devices.

80
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0 YOLOv5s

Such gains came about due to a number of
architectural and algorithmic inventions. The
major component of it is the backbone consisting
of the lightweight Vision Transformer (e.g,
MobileViT or TinyViT), which enables efficient
parallel computation on image patches and global
feature extraction, which is paramount to
capturing the long-distance dependencies and fine
details of objects. This model is also advantageous
with the technology of Quantization-Aware
Training (QAT) that makes it deployable in low-
precision  settings (e.g, INT8)  without
compromising performance, and with the
technique of structured attention head pruning,
removing redundant computations in multi-head
self-attention blocks. This helps in achieving a
tremendous latency and memory consumption.
Further, through Knowledge Distillation (KD) of a
YOLOV5 teacher model, student transformer model
gets to acquire the distilled fine-grained
localization, classification boundary and
confidence calibration- leading to even better
generalization, particularly under multi-object
scenes and partial-ocstructor set-ups.

E mAP@O0.5

mmm Latency (ms)
- FPS

s Model Size (MB)

DETR
Model

Proposed

Figure 6. Comparative Evaluation of Object Detection Models
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The model has some limitations when the
conditions are unfavorable e.g. low-light depths
and heavy object occlusion, where some of the
visual features are inhibited, or deformed. Such
border cases are likely to deteriorate the
localization accuracy of the model and raise false
negative. It implies that one of the directions of
future research is the use of sensor fusion methods
(e.g., thermal + RGB, LiDAR + vision) or some sort
of domain-adaptive training that trains the model
on a variety of visual conditions. Apart from that, a

potential area of interest is the application of
transformer variants capable of being deformed in
a spatial way, potentially increasing the flexibility
of representing the shapes and positions of
irregular objects. However, the present findings
unambiguously attest to the fact that the offered
model indeed strikes the right chord between
accuracy, speed, and resource efficiency, making it
a competitive alternative in two different settings
high-performance clouds and real-time edge.

Table 2. Comparative Performance Metrics of Object Detection Models (YOLOv5s, DETR, and Proposed
Transformer-Based Model)

Model mAP@0.5 (%) Latency (ms) FPS Model Size (MB)
YOLOv5s 91.2 28 35 7.5

DETR 92.4 85 11 41.2

Proposed 94.1 33 30 9.1

Transformer Model

7. CONCLUSION

This paper confirms that lightweight Transformer-
based models are efficient in detecting in real-time
objects especially on edge and embedded systems.
Proposed model provides an interesting trade-off
between accuracy (mAP@0.5 of 94.1%), latency
(33 ms), and small model size (9.1 MB) by
combining a Vision Transformer backbone and the
optimization methods of Quantization-Aware
Training and structured attention head pruning
and knowledge distillation similar to YOLOVS5. Such
results are not only better than traditional CNN-
based methods (e.g. YOLOv5s, DETR), but can also
confirm the model in being ready to be used in
real-time applications, including surveillance
systems, robotics, and IoT devices. Also, the
architecture is highly flexible in accommodating
future improvements by its modularity. In the
future, the model can be expanded to include
multi-modal inputs, i.e., fusing RGB with either
depth or heat data to detect better under difficult
visual conditions. Also, implementation on on-
flight autonomous navigation systems and even
hardware-targeted system optimization (FPGAs,
etc) will be possible to further improve
performance, power efficiency, and flexibility in
critical missions.
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