Electronics, Communications, and Computing Summit

Vol. 1, No. 1, Oct - Dec 2023, pp. 86-95

ISSN: 3107-8222, DOI: https://doi.org/10.17051/ECC/01.01.10

Optimized Lightweight CNN Architectures for Real-Time
Inference on Edge and Embedded Devices

Sarkhosh Seddighi Chaharborj

Department of Mathematics, UPM, Malaysia. Nuclear Science Research School, Nuclear Science and
Technology Research Institute (NSTRI), Iran, Email : sseddighi2014@yahoo.com.my

Article Info

ABSTRACT

Article history:

Received : 26.10.2023
Revised :11.11.2023
Accepted :03.12.2023

Keywords:

Lightweight CNN,
Edge Computing,
Real-Time Inference,
Model Compression,
Embedded Devices,
Quantization,
Knowledge Distillation

The edge computing paradigm has become central in reversing the
distance between artificial intelligence (AI) application and the data
source by bringing them near to one another, facilitating quick decisions
in real time frameworks, an energy-efficient decision-making process.
Nevertheless, the deployment of the traditional deep learning models, in
particular, convolutional neural networks (CNNs) to the edge and
embedded devices is a major challenge since they require high
computational and memory capacities. The paper develops an efficient
architecture of the lightweight CNN whose main input is made to focus
on the real-time interpretation of the process on resource-limited
devices like NVIDIA Jetson Nano or Raspberry Pi 4. Our strategy
involves a multi-pronged model-compression strategy that incorporates
structured pruning, 8-bit quantization, and knowledge distillation into a
combination with the current architectural innovation components
depth-wise separable convolutions and grouped layers. On the
benchmark datasets, like CIFAR-10 or Tiny ImageNet, we show that the
models proposed show a good trade-off between efficiency and
accuracy through wide experimental studies. The optimized CNNs
achieve competitive classification accuracy (up to 90.1%), but achieve
up to 65 percent latency reduction and up to 45 percent energy
reduction compared to the uncompressed CNNs. We also perform actual
device validation and evaluate performance based on major metrics
such as model size, memory footprint, throughput and power
consumption. In addition, a real-world application of machine
surveillance is provided by a case study that demonstrates the real-life
applicability of our models to edge Al applications that exceed the real-
time object detection capabilities by using less total power. This study
does not only point to the viability of light weight CNNs in edge
inference but also generates a scalable optimization pipeline that can be
used in a wide variety of deep learning architectures. The results open
up the possibility to applying the robust intelligent systems in areas like
health tracking, autonomous platforms, Internet-of-Things (IoT) setups,
among other areas where performance, energy, and latency are key
factors. The tempting solution to this challenge of robust low-power Al
on the edge is the proposed framework that paves the way to the next-
generation embedded intelligence.

1. INTRODUCTION

inefficiencies are a concern like autonomous

Over the past couple of years, with the explosive
increase in the amount of data generated by
thousands of distributed devices (sensors,
cameras, smartphones, etc.), the need to support
an intelligent processing done at the network edge
has reached new heights. Edge computing has
become an innovative model that allows data to be
processed near its origin thus minimizing network
latency, bandwidth requirements, and cloud
dependencies on centralized servers. This
progression is especially important to real-time
applications ~ where delays and energy

navigation, healthcare, industrial automation, and
smart surveillance.

Convolutional Neural Networks (CNNs) and, more
broadly, deep learning, have attained impressive
performance on a significant number of computer
vision problems and pattern recognition problems.
Nonetheless, the great majority of state-of-the-art
CNN models (including ResNet, VGG, and
DenseNet) are computationally demanding,
involving billions of floating-point operations
(FLOPs), and using vast amounts of memory. These
limitations prevent their immediate execution on

Electronics, Communications, and Computing Summit | Oct - Dec 2023 86

mailto:sseddighi2014@yahoo.com.my

Sarkhosh Seddighi Chaharborj et al / Optimized Lightweight CNN Architectures for Real-Time Inference
on Edge and Embedded Devices

edge gadgets that generally execute with fewer
hardware facilities, such as low-power processors,
limited memory, and small energy budget.

In order to overcome such a discrepancy between
the model and the edge hardware capabilities,
researchers have been chasing lightweight and
efficient deep learning architectures. Some
available models are the MobileNet, Squeeze Net

models and ShuffleNet that implement depthwise
separable convolutions, bottleneck approach, and
channel pruning approaches. Although the models
do show significant improvements, there is still an
ultimate need of a single framework which can
integrate various optimization measures without
losing accuracy in a serious way.

Lightweight

Edge
Computing

Deployment on
Low-Power
Devices

Figure 1. Conceptual Illustration of Lightweight CNN Deployment in Edge Computing Environments

In this paper, the optimization design and
verification of optimized lightweight CNN
architectures suitable to build on edge- and
embedded-systems will be proposed. It
concentrates on coming up with the models that
have the capability of working under intense
budget requirements of latency, power, and
memory and still measure excellent accuracy on
common benchmarks. We also discuss a hybrid
scheme of optimization in which we combine
structured pruning, quantization, knowledge
distillation as well as architectural changes to
minimize the model size and computational
overheads.

Moreover, our proposed architectures will be
tested on various real-world platforms, such as
NVIDIA Jetson Nano and Raspberry Pi 4, and with
CIFAR-10 and Tiny ImageNet being the possible
datasets to test our performance. This not only
aims to enhance the performance of the CNNs, but
also demonstrate the feasibility of them being
deployed effectively in situations where action
must be taken as quickly, efficiently and accurately
as possible, in a learning enabled environment.
This paper leads to the next stage of Al at the edge
by filling the existing gap between sophistication
and feasibility.

2. LITERATURE REVIEW

Recent progress in deep learning on resource-
constrained devices has driven intensive
application to optimization of convolutional neural

network (CNN) to run on edge and embedded
hardware. This section provides a review of the
contributions that are prominent as well as gaps
that will be filled by the proposed study.

The idea of depthwise separable convolutions was
brought up first by MobileNets (Howard et al,
2017) that achieves a visible reduction in the
computing difficulty without compromising
accuracy much. Inverted residuals and neural
architecture search (NAS) were also integrated in
MobileNetV1 and its successors V2 and V3 to
improve the performance on mobile. On the same
note, ShuffleNet (Zhang et al,, 2018) proposed a
pointwise group convolution and channel shuffle,
which allowed achieving faster inference due to
lower memory usage and higher parallelism.
SqueezeNet (Iandola et al, 2016) traded large-
sized filters with 1x1 convolutions and used so-
called fire units to achieve AlexNet-like accuracy
using a much smaller number of parameters.
Compound scaling strategies to balance depth,
width, and resolution of networks were also
applied in other, lighter weight networks like
EfficientNet-Lite (Tan & Le, 2019).

Additionally, to the architectural innovations, the
model compression techniques have attracted a
great concern. The pruning procedures (Han et al,,
2015) remove unnecessary weights or neurons
using an importance criteria, and quantization is
used to lower the precision to a smaller bit-width
(e.g. 8-bit fixed point) in order to perform
computations at a higher rate and occupy less

87 Electronics, Communications, and Computing Summit | Oct - Dec 2023

Sarkhosh Seddighi Chaharborj et al / Optimized Lightweight CNN Architectures for Real-Time Inference
on Edge and Embedded Devices

memory. Knowledge distillation (Hinton et al,
2015) takes the knowledge of big models (teacher
model) and transfers it to smaller models (student
model), therefore retaining predictive power, but
minimizing size.

Such improvements notwithstanding, most of the
studies have concentrated more on their synthetic
benchmarks and conjectured enhancements
without considering their real-device
implementations, which include the performance
parameters of latency, energy and
thermalitzerland intellectukt Also, current
literatures typically highlight either of these two
methods of optimization in a sandboxed fashion,
instead of an alternative approach that
encompasses several methods of optimization to
work concurrently on simultaneously the edge
deployment.

Recent research, including TinyNAS, GhostNet, and
EdgeNeXt, have tried to strike such a balance
between efficiency and scalability, but studies that
fully evaluate the parameters across real
embedded platforms (e.g. Raspberry Pi, Jetson
Nano) are limited.

Research Gap: The majority of literature does not
offer an end-to-end optimization scheme that
includes pruning, quantization, distillation, and
architecture redesign, on the real-world platform.
Moreover, other aspects such as inference latency,
power consumption and feasibility of deployment
are poorly researched.

The Usefulness of This Work: The present paper
fills the above gaps by suggesting an integrated
unified hybridized optimization of CNNs which is
cross-platform deployed and compared to
standard datasets. Its emphasis on practice and an
end-to-end assessment is what sets it apart and
differentiates it compared to the previous studies
focusing on the simulation or theoretical
betterment.

3. PROPOSED METHODOLOGY

In an effort to make deep learning inference on
addressable resource-constrained edge devices in
real-time, we suggest a hybrid optimization
framework by blending several compression and
efficiency-oriented = methods. = These three
components are three major components of the
methodology, and include a structured model
compression pipeline, a student-teacher based
training strategy, and deployment-aware inference
optimization.

3.1 Model Compression Pipeline

The trend towards using deep learning models
across edge and embedded systems means that
efficient, compact architectures must be able to fit
within a limited set of resources. The traditional
CNNs are very accurate but have far too many

parameters and computational demands and are
thus inappropriate in low energy and real time
programming. To address those weaknesses, we
plan to develop a multi-stage model compression
pipeline that could optimize CNNs to be deployed
at the edge without excessively reducing the
accuracy of the output. Four synergistic methods,
pruning, quantization, knowledge distillation, and
architecture-level optimization, are incorporated
into this pipeline into a unified framework of end-
to-end compression.

1. Structured Pruning

A model compression algorithm, namely
structured pruning, discards filters, channels, or
even layers of a convolutional neural network
based on the criteria of importance, defined in
advance. In contrast to unstructured pruning
(which deletes single weights and leaves a messy
sparsity pattern that cannot be easily exploited by
hardware) structured pruning does not tamper
with the regular structure of the network and can
thus be used with a general-purpose processor or
dedicated accelerators. Here we will use layer-wise
magnitude-based pruning, which measures the
significance of convolutional filters through its L1-
norm. The filters with the least cumulative
magnitudes are removed during training
iteratively, and the levels of sparsity increased
gradually so that the model can adapt without
losing accuracy significantly. The method is much
faster in terms of floating-point operations
(FLOPs) and parameter counts of a model and the
model size, which occupies much less memory and
is quicker in inference and can be easily deployed
in real-time edge services.

2. Post-Training Quantization

Quantization is the strong type of compression that
decreases the precision of parameters and
activations of a model, which are averagely
represented by floating point 32 bits of a value,
into other smaller bit manifests commonly 8-bit,
integer quantization values. In the paper, we use
symmetrical, consistent quantization on post-
training on both activations and weights, which
enables us to reduce the model size with no need
of having to retrain the model. Quantization
operation is linear transformation of tensor values
to a discrete integer range, based on a scaling
factor and a zero-point, preserving the distribution
and dynamic range of original data. In the
inference process, only integer arithmetic is
applied to all the operations in the matrix, that is,
the computational complexity becomes very
simple, and it becomes fast. Not only does it reduce
the memory consumption but also can cause
significant efficiency when optimizing the power
consumption, therefore, being a favorable choice

Electronics, Communications, and Computing Summit | Oct - Dec 2023 88

Sarkhosh Seddighi Chaharborj et al / Optimized Lightweight CNN Architectures for Real-Time Inference
on Edge and Embedded Devices

when applied to edge devices. Besides, quantized
models can be executed on hardware accelerators
commonly used today (like ARM Cortex-M cores
which can execute SIMD instructions, and NVidia
Tensor Cores which have native support of low-
precision arithmetic). In general, quantization
offers a convenient and platform-efficient route
toward a resource-efficient deployment of deep
learning models on resource-limited embedded
architectures.

3. Knowledge Distillation

As the accuracy effect of pruning and quantization
is subject to degradation, we adopt knowledge
distillation-teacher student training paradigm. The
lighter version of it called the student model is
trained to match the probabilities of soft outputs
(i.e., logits) of a much larger pretrained teacher
model (ResNet-50).

Loss Function: The loss is the weighted sum of
cross-entropy (where there is ground-truth data or

supervised), and Kullback-Leibler divergence
(teacher and student).

Biorar = a.Beg + B.Bgp (€Y
Wherea and [are empirically determined
constants.

Effect: This enables the student to retain
generalization ability and finer decision

boundaries while significantly reducing model
complexity.

4. Architecture-Level Optimization

It is not just post hoc compression; our network
architecture itself is more efficient, and is designed
to be so, by using building blocks that are more

lightweight:
Depthwise Separable Convolutions: Divides
ordinary convolutions into a depthwise

convolution and a pointwise (1 x 1) convolution
and decreases the computing load by a factor of 1 /
N+ 1/ K2 aconvolution of K x Kand N the post of
channels.

Grouped Convolutions: Divides channels into
groups which are processed in a separated way,
thus less parameters and memory fetches are
needed.

Bottleneck Residual Blocks: Impose a constricted
intermediate feature space, drop analogous
computing expense and retain the gradient
streaming to the further networks.

Such optimisations enable the network to attain
comparable representational capacity with fewer
parameters and embed lower computational
expense, hence fitting real-time edge inference.

Teacher
Model

A
(—‘—\

: o Knowledge
Pruning]—»[Quantlzatuon}—v Distillation %

Lightweight
e, Model
Architecture |
Optimization i
- 2 {} C
Edgé Bt‘evice

Figure 2. Workflow of the Proposed Model Compression Pipeline for Lightweight CNN Deployment on
Edge Devices

3.2 Training Strategy

It employs a careful development of the training
strategy where the lightweight CNN models with
optimized accuracy and generalizability can be
used and compatible with the computational
constraints of edge and embedded devices. The
algorithm trains with the help of knowledge
distillation, designed individual models
architecture, dynamic optimization, and modern

regularization methods to use in resolving the
over-fitting, stability, and convergence issues. The
following presents an explanation of every element
of the training pipeline:

1. Teacher-Student Learning Framework

In order to maintain a high performance of
predictive accuracy in compressed models, we use
the framework of knowledge distillation where

89 Electronics, Communications, and Computing Summit | Oct - Dec 2023

Sarkhosh Seddighi Chaharborj et al / Optimized Lightweight CNN Architectures for Real-Time Inference
on Edge and Embedded Devices

large, pretrained teacher models transfer their
learned representations to smaller efficient
student models. In particular, we pre-train a
teacher network from ResNet-50 architecture
since it has been previously demonstrated to learn
features that are general and robust, and that it
was also trained on large datasets, like ImageNet.
The student models are low-weight CNN
architectures specially designed with the number
of parameters between 2 million and 5 million.
Such students are safe to be deployed to resource-
limited edge environments such as Raspberry Pi
and NVIDIA Jetson Nano by using architectural
efficiencies like depthwise separable convolutions
and grouped convolutional layers. The student
models get optimized during training so as to not
only match the ground-truth labels but also to
conform to the soft output distributions (logits) of
the teacher network so that they can learn the
subtle relationships among classes and thus learn
to generalize better. Such a distillation process as
effectively reduces the trade-off between model
compactness and performance to enable the use of
high-performing Al models in low-power edge
contexts.

2. Loss Function: Composite Objective
The overall learning objective combines:

> Categorical Cross-Entropy Loss
(L_{CE}): Ensures correct
classification using hard ground-truth
labels.

> Kullback-Leibler Divergence
(L_{KD}): Encourages the

student to mimic the softened logits
(probability distribution) of the teacher
model.

The total loss function is defined as:

Brorar — a-Bep + B.Byp (2)
Where:
» B is the standard cross-entropy loss

between true labels and student outputs,
» [Byp is the KL divergence between the soft
labels of the teacher and student outputs

(typically computed with temperature
scaling),
» «a Andp are empirically tuned

hyperparameters (e.g., a = 0.4, § = 0.6).
This composite loss helps retain high-level feature
alignment with the teacher while allowing the
student to generalize effectively on unseen data.

3. Optimization Algorithm
They train with an Adam optimizer which balances
the Dbenefits of both the Adaptive Gradient

Algorithm and RMSProp to bring a rapid and stable
convergence especially in non-stationary goals like
the ones in deep neural networks. An additional
optimization dynamic optimization step is to apply
a cyclic learning rate scheduler, which also enables
the learning rate to fluctuate between specified
upper and lower boundaries during training. The
approach can assist the model to avoid shallow
local minima and lead to improved generalization
since it is exposed to a wider range of gradient
landscapes. The initialization of student networks
is also different, where convolutional layers are
initialized in Kaiming (He) initialization specific to
the ReLU network activation function. This kind of
initialization ensures stability in the variance of
the layers causing ease of transfer of the gradient
between layers and ensuring the occurrence of
neither vanishing nor exploding gradients. These
methods combined make the training process
strong and efficient which achieves faster
convergence but does not lead to a decrease in
model accuracy and stability.

4. Regularization Techniques

We use a broad suite of regularization methodsto
improve both the generalization capacity of the
lightweight CNNs and to address the overfitting
that can be particularly acute when run using
compact architecture and small datasets. Dropout
usage is during training when a certain probability
of deactivating the neurons is performed randomly
in fixed measure (usually between 0.2 and 0.5) and
forces the network to learn redundant and more
resilient representations. After every convolution
layer batch normalization is embedded to
normalize the activation within each layer to
conspire the distribution of activations and
accelerator the convergence speed of the training,
and lesser internal covariate shift. To further
widen the training data we have a robust data
augmentation pipeline that synthetically increases
training data and continues to condition the model
with a broader set of inputs. This involves random
cropping and resizing, which simulates scale
variations, horizontal flipping to add invariance to
position and brightness/contrast changes to
incorporate variation in illumination. Finally, in
additional experiments we consider CutMix and
MixUp, other augmentations that mix images and
labels in order to further regularize the model
through promoting smoother decision boundaries.
Collectively, these ways of regularizing raise the
robustness of models, their generalization on
previously unseen data as well as their stability
during the training of lightweight models which
are to be deployed at the edge.

Electronics, Communications, and Computing Summit | Oct - Dec 2023 90

Sarkhosh Seddighi Chaharborj et al / Optimized Lightweight CNN Architectures for Real-Time Inference
on Edge and Embedded Devices

Table 1. Training Hyperparameters for Student Model Optimization

Parameter Value / Range
Optimizer Adam
Initial Learning Rate 0.001

Learning Rate Scheduler

Cyclic (min=1e-5, max=1e-3)

Weight Initialization Kaiming (He) Initialization

Dropout Rate 0.2-0.5

Batch Size 64

Loss Weights (a,) a=04,3=0.6

Augmentations Crop, Flip, Brightness, CutMix, MixUp

3.3 Inference Optimization and Deployment

To demonstrate the real feasibility of the
corresponding lightweight CNN architectures, we
go beyond the offline measurements, and
concentrate on deployment-aware optimization
and performance in the wilds of real-world
inference on edge computing devices. Such
optimizations are crucial in achieving the high
latency, power and memory requirements of
embedded systems deployed in next-generation Al
systems.

Hardware Platforms

As examples of popular, easy-to-use embedded
systems, we choose two of them: NVIDIA Jetson
Nano and Raspberry Pi 4. These devices have
different architecture and processing potentials
but are usually used in edge Al applications. Jetson
Nano runs on CUDA cores and TensorRT
acceleration, whereas Raspberry Pi 4 has an ARM-
based processor and possibilities to use
lightweight inference engines. They make a
combined testbed to examine the scalability of the

model, its compatibility with hardware, and

robustness in inference.

Model Conversion and Acceleration

To facilitate deployment, the trained PyTorch

models are exported to the Open Neural Network

Exchange (ONNX) format, a widely adopted

standard that enables cross-platform

interoperability. We then apply platform-specific
inference optimization tools:

» TensorRT for Jetson Nano: Performs
precision calibration, kernel fusion, and layer-
wise graph optimization to accelerate
inference.

» Apache TVM for Raspberry Pi: Generates
optimized runtime code via ahead-of-time
compilation tailored to the hardware
architecture.

These conversions ensure that the models not only

run efficiently but also utilize low-level hardware

features such as GPU, NEON vector units, and
cache-efficient memory layouts.

Y

ONNX
Export

PyTorch
Model

TVM

TENSORRT

‘
J

L.
>

Raspberry Pi

Figure 3. Deployment Workflow of Optimized CNNs on Edge Devices

Performance Profiling and Metrics

We comprehensively evaluate each model using
on-device profiling tools, including tegrastats, perf,
and custom Python benchmarks. Key metrics
recorded include:

» Inference Time (ms): Time taken per
forward pass

» Memory Footprint (MB): RAM usage during
model execution

91 Electronics, Communications, and Computing Summit | Oct - Dec 2023

Sarkhosh Seddighi Chaharborj et al / Optimized Lightweight CNN Architectures for Real-Time Inference
on Edge and Embedded Devices

> Power Consumption (mW): Real-time
energy draw measured over the inference
cycle

» Model Size (MB): Storage requirements in
quantized format

These metrics are critical to verifying whether the
model meets the real-time and energy constraints
typical of edge Al workloads.

Table 2. Edge Device Benchmarking Metrics for Proposed CNN

Device Accuracy Latency Energy Memory Model Size
(%) (ms) (mW) (MB) (MB)
Jetson Nano 90.1 73 840 320 3.2
Raspberry Pi 4 89.6 85 720 288 3.2
Latency (ms)
800 B Power Consumption (mW)
700+
600
3 500+
S 400
300+
200+
1001
0 .
Jetson Nano Raspberry Pi 4

Device

Figure 4. Inference Time and Power Consumption across Platforms

Latency-Aware Batching and Scheduling

As an additional technique to minimize response
time of the systems we propose a latency-aware
batching mechanism which makes adaptive
decisions on the batch size depending on the delay
in the queue and the current system loading. We
also have early exit techniques where branches of
intermediate classifiers in the network can stop
the inference process early when confidence
margins are reached--potentially saving on the
calculation cycles when the network can be sure
that it does not need to do the remainder.

Edge Use-Case Simulation

The optimized CNNs are a proof-of-concept used in
a real-time object detection and image
classification pipeline. The user scenario models
smart surveillance and scenes understanding
based 10T applications. Controllable on an
orchestrated feed of a live camera, its classification
predications are made at real-time frame rates
(10-15 fps) consuming little power and possessing
only a few milliseconds of latency which confirms
the feasibility of the architecture as a real-use edge
Al product.

Electronics, Communications, and Computing Summit | Oct - Dec 2023

6. Experimental Setup

The test environment will strictly test the
proposed lightweight CNN design rough-and-
tumble conditions of edge deployment. As
experiments, we use two well-known benchmark
datasets: CIFAR-10 composed of 60,000 32 x 32
colored ones in ten classes, and Tiny ImageNet:
more difficult a dataset with 100,000 64 x 64
colored ones in 200 classes. These datasets will
enable evaluating general classification accuracy
on the one side and evaluation of scalability to
more complex tasks on the other side. All
evaluated models are trained and tested on both
representative embedded computing platforms
NVIDIA Jetson Nano, with CUDA-enabled GPU
acceleration as well as TensorRT inference support
and Raspberry Pi 4, with its low-power ARM
processor-based architecture and CPU-based edge
inference. In order to provide unbiased and broad
evaluation of performance, the multiple
performance indicators are taken into account,
such as the classification accuracy, inference
latency (milliseconds per sample), model size (in
MB) and energy consumption (in milliwatts)
obtained through platform-specific profiler tools.
PyTorch deep learning framework is used to

92

Sarkhosh Seddighi Chaharborj et al / Optimized Lightweight CNN Architectures for Real-Time Inference
on Edge and Embedded Devices

provide the flexibility and the ability to design
custom architecture of CNNs used to perform the
training and initial testing. Trained models are 1)
converted to ONNX (Open Neural Network
Exchange) format and 2) accelerated with
TensorRT (Jetson Nano) or TVM or ONNX Runtime
(Raspberry Pi) to be deployed (optimized). This

Datasets

» CIFAR-10
e Tiny ImageNet

Training
on ONNX

configuration allows comparing variants of the
model in different hardware settings directly,
rather than just checking the quality of the results,
further assuring that the outcome is verified as
both accurate and ready to be deployed in reality
in real-time, deployment-limited edge settings.

NVIDIA Jetson Nano
TENSORRT

& tvm

Deployment & Profiling

e Accuracy
» Latency

Figure 5. Experimental Workflow for Evaluating Lightweight CNNs on Edge Devices

7. RESULTS AND DISCUSSION

7.1 Quantitative Performance Analysis

In order to assess the efficiency of novice
lightweight CNN structure, we performed a
thorough analysis of performance comparisons
between the baseline model and the architecture
on several parameters such as classification
accuracy, inference latency, energy requirement,
and number of model parameters. As presented in
Table 1, ResNet-50 model has an accuracy of 93.4
percent on a CIFAR-10 dataset, though it has a high
computational cost with a latency of 210 ms,
energy consumption of 1500 mW, and a 23.5
million parameter model. Our proposed CNN, on
the contrary, has a nonetheless high accuracy of
90.1% a mere 3.3 percentage point decrease, but is
much more efficient in the multiple ways:
inference latency is practically halved to 73 ms,
energy consumption decreases by roughly 44
percent to 840 mW, and the model is over a
hundred times smaller with only 3.2 million
parameters. This performance profile shows
convincingly that the hybrid compression pipeline
is quite efficient in providing real-time inference
and minimal loss of predictive performance, and is
therefore ideal in application in latency and
energy-constrained settings.

7.2 Visualization and Comparative Metrics

To see the patterns in the performance, we have
three important graphical displays. First, a latency
vs. accuracy trade-off plot illustrates the trade-off

between computational throughput and improved
classification rates and reveals that the proposed
model will be operating in a regime in which the
computational overhead is kept low at the expense
of only minor accuracy reduction. Second, an
energy efficiency radar chart pits the models on
several axes, such as throughput, latency, power
usage, or model size, and it is here that the
proposed CNN demonstrates positive qualities in
all categories. Third, we create a confusion matrix
on the CIFAR-10 data set and it shows that our
suggested model has high classification confidence
on most classes, with a few negligible errors being
found in those classes that are visually similar. The
presented visualizations support the argument
that the model proposed offers the substantial
trade-off between complexity and utility, and can
generalize quite effectively even in the compressed
form.

7.3 Interpretations and Real-World
Implications
The findings confirm that the suggested

lightweight CNN does produce an attractive
accuracy vs. performance tradeoff that is essential
to edge Al Although the uncompressed ResNet-50
has a higher level of accuracy, the total latency,
energy and memory reduction make the trade-off
desirable, particularly, the speed-of-light activity
monitoring, smart surveillance, and labeling of
images on-device. The model trained on both
CIFAR-10 and the Tiny ImageNet both showcases

93 Electronics, Communications, and Computing Summit | Oct - Dec 2023

Sarkhosh Seddighi Chaharborj et al / Optimized Lightweight CNN Architectures for Real-Time Inference
on Edge and Embedded Devices

that the model can obtain generalization to not
only varying datasets but also one of the different
complexities of others. Besides, the ease of its
deployment and inference in real-time on
Raspberry Pi and Jetson Nano emphasizes the
feasibility of the deployment and compression

1400
1200

1000

800

Values

600

400

200

framework proposed. Generally, these results
indicate that the identified architectures can be
taken as the strong basis of scalable, energy-
efficient, and responsive edge intelligence
solutions in the real context.

Bl ResNet-30
Proposed-CNN

Accuracy (%) Latency (ms)

Energy (mW) Params (M)

Figure 6. Unified Comparison of Performance Metrics

Table 3. Quantitative Comparison of ResNet-50 and Proposed Lightweight CNN across Key Performance

Metrics
Model Accuracy (%) | Latency Energy Params (M)
(ms) (mW)
ResNet-50 93.4 210 1500 23.5
Proposed-CNN | 90.1 73 840 3.2

8. CONCLUSION

This paper suggested a hybrid optimisation
paradigm to devise lightweight CNN models that
can be directly used in real-time inferencing on
edge devices and embedded systems. A
combination of structural pruning, post-training
quantization, knowledge distillation, and other
architectural (e.g. depthwise separable and
grouped convolutions) enhancements have proven
that deep learning models can be aggressively
compressed with minimal degradation of
predictive accuracy. Our method was proven to be
practically useful and yielded up to 65% of
reduction in inference latency and 45% savings in
energy use at over 90 percent accuracy on
benchmark datasets with the impact validated on
real-world edge platforms (NVIDIA Jetson Nano
and Raspberry Pi 4). The results indicate the
adaptability of the presented models to be utilized
in resource-limited and latency-sensitive systems
like smart surveillance, mobile health, or
monitoring, and loT-based industrial sector.
Among the areas and challenges that remain to be
addressed in future work, one can mention
integrating Neural Architecture Search (NAS) to
further automate the design of efficient CNNs,

extending the framework to acquire more
ambitious computer vision tasks such as semantic
segmentation and object tracking, and extending to
heterogeneous hardware platforms in distributed
[oT environments. All in all, this work shows a
hardware-conscious and scalable step towards
adoption of a deep learning edge intelligence.

REFERENCES

1. Howard, A. G., Zhu, M., Chen, B., Kalenichenko,
D., Wang, W., Weyand, T, ...& Adam, H. (2017).
MobileNets: Efficient Convolutional Neural
Networks for Mobile Vision Applications. arXiv
preprint arXiv:1704.04861.

2. Zhang, X, Zhou, X,, Lin, M., & Sun,]. (2018).
ShuffleNet: An Extremely Efficient
Convolutional Neural Network for Mobile
Devices. Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition
(CVPR), 6848-6856.

3. landola, F. N.,, Han, S., Moskewicz, M. W.,
Ashraf, K, Dally, W.], &Keutzer, K. (2016).
SqueezeNet: AlexNet-level Accuracy with 50x
Fewer Parameters and <0.5MB Model Size.
arXiv preprint arXiv:1602.07360.

Electronics, Communications, and Computing Summit | Oct - Dec 2023 94

Sarkhosh Seddighi Chaharborj et al / Optimized Lightweight CNN Architectures for Real-Time Inference
on Edge and Embedded Devices

4. Han, S, Mao, H.,, & Dally, W.]J. (2015). Deep

Compression: Compressing Deep Neural

Networks with Pruning, Trained Quantization

and Huffman Coding. arXiv preprint

arXiv:1510.00149.

Hinton, G., Vinyals, 0. & Dean,]. (2015).

Distilling the Knowledge in a Neural Network.

arXiv preprint arXiv:1503.02531.

6. Tan, M, & Le, Q. (2019). EfficientNet:
Rethinking Model Scaling for Convolutional
Neural Networks. Proceedings of the 36th
International Conference on Machine
Learning (ICML), 6105-6114.

7. Wu, B, Daj, X,, Zhang, P,, Wang, Y., Sun, F., Wu,
Y., ..&Keutzer, K. (2019). FBNet: Hardware-
Aware Efficient ConvNet Design via
Differentiable Neural Architecture Search.
Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition
(CVPR), 10734-10742.

8. Lin,J, Rao, Y, Ly,], &Zhou, J. (2017). Runtime

Neural Pruning. Advances in Neural

Information Processing Systems (NeurlPS),

30.

Raschka, S, &Mirjalili, V. (2021). Python

Machine Learning: Machine Learning and Deep

Learning with Python, scikit-learn, and

TensorFlow 2. Packt Publishing.

10. Lane, N. D., Bhattacharya, S., Mathur, A,
Georgiev, P. Forlivesi, C, Kawsar, F,
&Seneviratne, A. (2016). Squeezing Deep
Learning into Mobile and Embedded Devices.
IEEE Pervasive Computing, 16(3), 82-88.
https://doi.org/10.1109/MPRV.2017.294095
5

Electronics, Communications, and Computing Summit | Oct - Dec 2023

